UAV Design Tutorial II

Bill Donovan June 25, 2007

NATIONAL SCIENCE FOUNDATION :: KANSAS TECHNOLOGY ENTERPRISE CORPORATION :: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

The University of Kansas | The Ohio State University | Pennsylvania State University The University of Maine | Elizabeth City State University | Haskell Indian Nations University

Centre for Polar Observation and Modelling | University of Copenhagen Technical University of Denmark | Antarctic Climate & Ecosystems CRC

Overview

- Overview of Design Process
- Configuration Selection

- 1. Review Mission Spec
- 2. Perform Study of Similar Aircraft
- 3. Select Type of Configuration
- 4. Prepare a Preliminary Drawing of Fuselage
- 5. Decide on Propulsion System
- 6. Decide on Wing Planform Parameters

- 7. Decide on Type, Size, and Disp of High Lift Devices
- 8. Decide on the Layout of the Empennage
- 9. Decide on Type and Disposition of Landing Gear
- 10. Prepare a Scaled Preliminary Arrangement
- 11. Perform a Class I Stability and Control Analysis
- 12. Perform a Class I Drag Analysis

- 13. Analyze the Results of Steps 10 and 11
- 14. Compute the L/D for Each Mission Segment
- 15. Determine Impact of Changes in L/D on W_{TO} , W_E , and W_F
- 16. Prepare a Dimensioned 3-View

KTEC

 \leq

	B-47H	AVRO Vulcan
•WTO(lbs):	202,000	200,000
•S (ft2):	1,400	3,964
•W/S(psf):	144	50.5
AR	9.6	3.1
f (ft2)	34	29
L/D max	15.8	16.4
CL, max	0.77	0.24

Name these airplanes

- Predator A and Predator B
- Why are the tails different?
 - Control
 - Stability
 - Aesthetics

Configuration Selection - Engine

- Pusher Propeller in the rear
- Tractor Propeller in the front
- Pros, Cons?

Configuration Selection -Empennage

EC

- Twin boom
- V-Tail
- Y-Tail
- Conventional Tail

Configuration Selection – The Meridian

13 of 101

Configuration Selection – The Meridian

Engine Selection

Innodyn 165TE

Centurion 1.7

15 of 101

Engine Selection

 Primary Engine Changed from Innodyn 165TE to Thielert Centurion 2.0

Structural Design Constraints

- Strength/stiffness at various load cases
- Weight
- Transportation requirements (wing splice)
- Manufacturability
- Cost
- Elastic stability (buckling)
- Aerodynamic stability (flutter)

Wing: Structural Trade Studies

- Wing spars: Tubes vs built-up C beams; Alum vs CFRP
- Outboard wing skin: Alum vs Composites

- Weight?
- Cost (including tooling)?
- Ease of landing gear integration?
- Ease of splice assembly?

Wing Structural Arrangement

Wing Attachment

Material Selection

- Carbon Fiber
 - High stiffness-to-weight
 - Expensive
 - Difficult to inspect
- Aluminum

- Moderate stiffness-to-weight
- "Nice" failure modes
- Easy to inspect

Material Selection

- Carbon Fiber
 - Good for complex shapes where stiffness is

Skins

- Aluminum
 - Good in areas where you will bolt things together

Material Selection

- Fiberglass
 - Inexpensive
 - Low stiffness-to-weight ratio

CReSIS

24 of 101

- Steel
 - Very high strength
 - Good for impact loads (Landing Gear, Hinges)

Electrical Power Sizing

Payload Integration

Payload Integration

Summary

- "Aircraft Design is a highly iterative, nonunique process."
 – Dr. Jan Roskam
- "In aircraft design, everything depends on everything else."
 - Dr. Jan Roskam

Questions?

National Science Foundation

KU THE UNIVERSITY OF KANSAS

