Radar Pulse Compression

Chris Allen

Outline

- Why is pulse compression needed?
- Pulse compression, the compromise
- How it works
- Simplified view of concept
- Pulse coding
 - Phase-coded pulse
 - Chirp (linear FM)
- Receiver signal processing
- Window functions and their effects

Why is pulse compression needed?

Radar range resolution depends on the bandwidth of the received signal.

 $\rho = \frac{c \tau}{2} = \frac{c}{2B}$ $c = \text{speed of light, } \rho = \text{range resolution,}$ $\tau = \text{pulse duration, } B = \text{ signal bandwidth}$

The bandwidth of a time-gated sinusoid is inversely proportional to the pulse duration.

– So short pulses are better for range resolution

- Received signal strength is proportional to the pulse duration.
 - So long pulses are better for signal reception

Spatial discrimination

- Spatial discrimination relates to the ability to *resolve* signals from targets based on spatial position or velocity. angle, range, velocity
- Resolution is the measure of the ability to determine whether only one or more than one different targets are observed. Range resolution, r_R , is related to signal bandwidth, B

Fig. 7.19 More realistic example of range resolution.

Range resolution

Clearly to obtain fine range resolution, a short pulse duration is needed.

However the amount of energy (not power) illuminating the target is a key radar performance parameter.

Energy, E, is related to the transmitted power, P_t by

$$\mathbf{E} = \int_0^\tau \mathbf{P}_t(t) dt \qquad \mathbf{P}_t \mathbf{P}_t$$

Therefore for a fixed transmit power, P_t , (e.g., 100 W), reducing the pulse duration, τ , reduces the energy E. $P_t = 100 \text{ W}, \tau = 100 \text{ ns} \rightarrow r_R = 50 \text{ ft}, \text{ E} = 10 \text{ µJ}$ $P_t = 100 \text{ W}, \tau = 2 \text{ ns} \rightarrow r_R = -1 \text{ ft}, \text{ E} = 0.2 \text{ µJ}$

Consequently, to keep E constant, as τ is reduced, P_t must increase.

Challenges in radar

 $P_{\rm R} \propto P_{\rm T} / (4\pi)^2 {\rm R}^4$

Weak received signal power (spherical spreading loss)

	Basketball court	Sear's tower	Jet aircraft	Space station	Moon
R	(94') 29 m	(1450') 442 m	(30,000') 10 km	360 km	384,400 km
$1 / (4 \pi)^2 R^4$	9×10^{-9}	1.7×10^{-13}	6.3×10^{-19}	3.8×10^{-25}	2.9×10^{-37}
P _R *	0.0009 W	$1.7 \times 10^{-8} \text{ W}$	$6.3 \times 10^{-14} \text{ W}$	$3.8 \times 10^{-20} \text{ W}$	$2.9 \times 10^{-32} \text{ W}$

* assumes $P_T = 100 \text{ kW} = 10^5 \text{ W}$ (KANU effective broadcast power)

<u>Noise</u> (anything above absolute zero radiates thermal noise) $P_N = kTB$

k = Boltzmann's constant ($1.38 \times 10^{-23} \text{ J/K}$)

T = temperature in Kelvin (normal room temperature is ~290 K)

B = bandwidth (Hz)

Bandwidth impacts the ability to measure range accurately or to resolve multiple targets at similar ranges, otherwise we'd set B to a very small value.

Range resolution, r_R , is bandwidth dependent, $r_R = \frac{c\tau}{2} = \frac{c}{2B}$

	10 Hz	1 kHz	200 kHz	10 MHz	300 MHz
P _N	$4 \times 10^{-20} \mathrm{W}$	$4 \times 10^{-18} \mathrm{W}$	$8 \times 10^{-16} \mathrm{W}$	$4 imes 10^{-14} \ { m W}$	$1.2\times 10^{\textbf{-}12}~\mathrm{W}$
r _R	15,000 km	150 km	750 m	15 m	50 cm

More Tx Power??

- Why not just get a transmitter that outputs more power?
- High-power transmitters present problemsRequire high-voltage power supplies (kV)Reliability problemsSafety issues (both from electrocution and irradiation)
 - Bigger, heavier, costlier, ...

Pulse compression, the compromise

Transmit a long pulse that has a bandwidth corresponding to a short pulse

Must modulate or code the transmitted pulse

- to have sufficient bandwidth, B
- can be processed to provide the desired range resolution, ρ

Example:

Desired resolution, $r_R = 15 \text{ cm} (\sim 6")$ Required pulse energy, E = 1 mJ**Brute force approach** Raw pulse duration, $\tau = 1 \text{ ns} (10^{-9} \text{ s})$ **Pulse compression approach** Pulse duration, $\tau = 0.1 \text{ ms} (10^{-4} \text{ s})$ Required bandwidth, B = 1 GHz (10⁹ Hz) E(J) = P(W) $\cdot \tau(s)$

Required transmitter power, P = 1 MW !

Required transmitter power, P = 100 W

Simplified view of concept

Energy content of long-duration, low-power pulse will be comparable to that of the short-duration, high-power pulse

 $\tau_1 \ll \tau_2$ and $P_1 \gg P_2$

Pulse coding

Long duration pulse is coded to have desired bandwidth. Various ways to code pulse. $\rightarrow 1$ ns $\leftarrow 1$

Phase code short segments Each segment duration = 1 ns Linear frequency modulation (chirp)

$$(t) = A \cos\left(2\pi \left(f_C t + 0.5 k t^2\right) + \phi_C\right) \leftarrow \tau - \tau - \tau$$

 f_{C} is the starting frequency (Hz)

k is the chirp rate (Hz/s)

 $\mathbf{B} = \mathbf{k}\tau = 1 \text{ GHz}$

S

Choice driven largely by required complexity of receiver electronics

Receiver signal processing phase-coded pulse generation and compression

Receiver signal processing phase-coded pulse compression

Correlation process may be performed in analog or digital domain. A disadvantage of this approach is that the data acquisition system (A/D converter) must operate at the full system bandwidth (e.g., 1 GHz in our example).

PSL: peak sidelobe level (refers to time sidelobes)

Receiver signal processing chirp generation and compression

Transmit a long-duration, FM pulse.

Correlate the received signal with a linear FM waveform to produce range dependent target frequencies.

Signal processing (pulse compression) converts frequency into range.

Key parameters:

- B, chirp bandwidth
- τ , Tx pulse duration

Figure 6-22. (a) The range measurement technique using pulsed radar. Separation of targets would require a short pulse such that $\tau < 2 \Delta R/c$. (b) The range measurement technique using FM sweep radar.

Challenges with stretch processing

Received signal (analog)

Echos from targets at various ranges have different start times with constant pulse duration. Makes signal processing more difficult.

dechirp operation relaxes requirement on A/D converter.

Correlation processing of chirp signals

- Avoids problems associated with stretch processing
- Takes advantage of fact that convolution in time domain equivalent to multiplication in frequency domain
 - Convert received signal to freq domain (FFT)
 - Multiply with freq domain version of reference chirp function
 - Convert product back to time domain (IFFT)

Signal correlation examples

Signal correlation examples

Signal correlation examples

Chirp pulse compression and sidelobes

Window functions and their effects

Weighting Function	Peak Sidelobe Level	S/N Loss	Relative Mainlobe Width
Uniform	-13.2	0	1
0.33+0.66cos ² (πf/β)	-25.7	0.55	1.23
$\cos^2(\pi f/\beta)$	-31.7	1.76	1.65
Taylor (n=8)	-40	1.14	1.41
Dolph Chebyshev	-40	-	1.35
Hamming	-42.8	1.34	1.5

Time sidelobes are an side effect of pulse compression.

Windowing the signal prior to frequency analysis helps reduce the effect.

Some common weighting functions and key characteristics

∟ess common window	
unctions used in radar	
applications and their key	
characteristics	

Window	Rect angle	Ham ming	Black man	Blackman-Harris			
				Х3	М3	X4	M4
Worst Sidelobe (dB)	-13	-43	-58	-61	-67	-74	-92
3dB beamwidth (bins)	0.89	1.3	1.68	1.56	1.66	1.74	1.9
Resolution (bin)	1.21	1.81	2.35	2.19	2.2	2.44	2.72
Scalloping Loss (dB)	3.92	1.78	1.1	1.27	1.13	1.03	0.83
SNR Loss (dB)	0	1.34	2.37	2.07	2.33	2.53	3.02
Main Lobe Width (bins)	2	4	6	6	6	8	8
a0	1	0.54	0.42	0.44959	0.42323	0.40217	0.35875
a1		0.46	0.50	0.44364	0.49755	0.49703	0.48829
a2			0.08	0.05677	0.07922	0.09392	0.14128
a3						0.00183	0.01168
W(n)=a0-a1cos[2π(n-1)/N]+a2cos[4π(n-1)/N]-a3 cos[6π(n-1)/N]							

Window functions Basic function: $c_k = \cos(2k\pi(n-\frac{1}{2}N)/N)$

a and b are the –6-dB and - ∞ normalized bandwidths

Detailed example of chirp pulse compression

received signal

$$s(t) = a \cos\left(2 \pi \left(f_{c}t + 0.5 k t^{2}\right) + \phi_{c}\right)$$

dechirp analysis

$$s(t) \ s(t-\tau) = a \ \cos\left(2 \ \pi \left(f_{c}t + 0.5 \ k \ t^{2}\right) + \phi_{c}\right) a \ \cos\left(2 \ \pi \left(f_{c}(t-\tau) + 0.5 \ k \ (t-\tau)^{2}\right) + \phi_{c}\right)$$

Pulse compression effects on SNR and blind range

SNR improvement due to pulse compression: $B\tau$

$$SNR_{compress} = \frac{P_t G_t G_r \lambda^2 \sigma}{(4\pi)^3 R^4 k T B F} B \tau$$

Case 1: $P_t = 1$ MW, $\tau = 1$ ns, B = 1 GHz, E = 1 mJ For a given R, G_t, G_r, λ , σ : SNR_{video} = 10 dB $B\tau = 1 \text{ or } 0 \text{ dB}$ $SNR_{compress} = SNR_{video} = 10 \text{ dB}$ Blind range = $c\tau/2 = 0.15$ m Case 2: $P_t = 100 \text{ W}, \tau = 0.1 \text{ ms}, B = 1 \text{ GHz}, E = 1 \text{ mJ}$ For a same R, G_t, G_r, λ , σ : SNR_{video} = -30 dB $B\tau = 100,000 \text{ or } 50 \text{ dB}$ $SNR_{compress} = 10 \text{ dB}$ Blind range = $c\tau/2 = 15$ km

Conclusions

- Pulse compression allows us to use a reduced transmitter power and still achieve the desired range resolution.
- The costs of applying pulse compression include:
 - added transmitter and receiver complexity
 - must contend with time sidelobes
 - increased blind range
- The advantages generally outweigh the disadvantages so pulse compression is used widely.