Principles of Radar an introductory view

Chris Allen

Basic concepts

- EM signal transmission
- Signal reception
- Infer information about the 'target' by comparing received signal with transmitted signal

EM signals

- Frequency, wavelength, polarization, and speed of light
- signals propagate at speed of light, $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}=1 \mathrm{foot} / \mathrm{ns}\left[1 \mathrm{~ns}=10^{-9} \mathrm{~s}\right.$]
- speed of light is $\sim 1,000,000$ time faster than speed of sound in air

Reflection, refraction, attenuation, and scattering

Reflection, refraction, attenuation, and scattering

- Reflection and refraction depend on material's electrical and magnetic properties, geometry, surface characteristics
- Attenuation (signal strength reduction) caused by absorption (energy converted to heat) and scattering
- Scattering depends on material's electrical and magnetic properties and size of scatterer (relative to wavelength)
(why the sky is blue)

Radar components

Timing and control
Waveform generator
Transmitter electronics
Transmit antenna
Receive antenna
Receive electronics
Data acquisition system Digital signal processor Ancillary sensors
(e.g., GPS)

Data storage device

Figure 4. Simplified Block Diagram of the Twin-Otter SAR

Radar Range Equation

Received signal power (P_{r}) depends on:
P_{t} : transmitted signal power
G: antenna's ability to focus power on target
R : range to the target
σ : target's radar cross section
A_{e} : antenna's ability to capture echo signal

$$
\mathrm{P}_{\mathrm{r}}=\mathrm{P}_{\mathrm{t}} \frac{\mathrm{G}}{4 \pi \mathrm{R}^{2}} \sigma \frac{1}{4 \pi \mathrm{R}^{2}} \mathrm{~A}_{\mathrm{e}}
$$

which simplifies to

$$
P_{r}=\frac{P_{t} G \sigma A_{e}}{(4 \pi)^{2} R^{4}}
$$

What can be measured

Target range

Transmitted signal is time-gated sinusoid,

$$
\begin{aligned}
& \mathrm{s}(\mathrm{t})=\mathrm{A} \cos \left(2 \pi \mathrm{f}_{\mathrm{TX}} \mathrm{t}+\phi_{\mathrm{TX}}\right) \quad \text { for } 0 \leq \mathrm{t} \leq \tau \\
& \text { (pulse duration is } \tau \text {) }
\end{aligned}
$$

Received signal is

$$
\mathrm{p}(\mathrm{t})=\mathrm{B} \cos \left[2 \pi \mathrm{f}_{\mathrm{TX}} \mathrm{t}+\phi_{\mathrm{TX}}+\phi_{\mathrm{RX}}\right] \text { for } \mathrm{T} \leq \mathrm{t} \leq \mathrm{T}+\tau
$$

Round-trip travel time, $T=\frac{2 R}{c} \quad$ so $\quad R=\frac{c T}{2}$
and we can measure time with great precision

Target Range - Altimeter

Altimeter concept.

Altimeter data

Altimeter data

Global topographic map of ocean surface produced with satellite altimeter.

What can be measured

Spatial extent of target

Antenna directs radar signal in narrow beam, rotating antenna enables radar to scene in a circular fashion

Radar antenna.

Radiation pattern of radar antenna.

Spatial extent of target

17:32 08-JUN-2004 GHT ©gCopyright MSI Corporation http://unu, wsi, con

Rain off the coast of Brownsville, Texas.

Spatial extent of target

A flock of birds traveling north into south Texas from the Gulf of Mexico.

What can be measured

Relative radial velocity of target

Received signal phase, $\phi_{R X}$, is range dependent, $\phi_{R X}=2 \pi \frac{2 R}{\lambda}$ where λ is the signal wavelength, $\lambda=\mathrm{c} / \mathrm{f}_{\mathrm{TX}}$
If the range to the target changes, the received signal phase will change with time producing a Doppler shift, f_{D}, where

$$
\mathrm{f}_{\mathrm{D}}=\frac{\Delta \phi_{\mathrm{RX}}}{\Delta \mathrm{t}}
$$

which can be shown to be

$$
\mathrm{f}_{\mathrm{D}}=\frac{2 \mathrm{v}}{\lambda} \cos \theta
$$

where θ is the angle between the velocity vector and the radar's range vector. The received signal is

$$
\mathrm{p}(\mathrm{t})=\mathrm{B} \cos \left[2 \pi\left(\mathrm{f}_{\mathrm{TX}}+\mathrm{f}_{\mathrm{D}}\right) \mathrm{t}+\phi_{\mathrm{TX}}\right] \quad \text { for } \mathrm{T} \leq \mathrm{t} \leq \mathrm{T}+\tau
$$

Relative radial velocity of target

Radial velocity of precipitation near Brownsville, Texas.

Relative radial velocity of target

Isorange and isodoppler lines for aircraft flying north at $10 \mathrm{~m} / \mathrm{s}$ at a $1500-\mathrm{m}$ altitude. $\Delta \mathrm{R}=2 \mathrm{~m}, \Delta \mathrm{~V}=0.002 \mathrm{~m} / \mathrm{s}, \Delta \mathrm{f}_{\mathrm{D}}=0.13 \mathrm{~Hz} @ \mathrm{f}=10 \mathrm{GHz}, \lambda=3 \mathrm{~cm}$

What can be measured

Target reflectivity

Backscatter depends on material properties, local geometry (e.g., slope), surface roughness. By combining the ability to discriminate based on range and velocity (Doppler), images of radar backscatter can be formed.

Real-aperture, side-looking airborne radar (SLAR) image of Puerto Rico

Mosaicked image composed of 48-km (30-mile) wide strip map images

Radar parameters

modified Motorola APS-94D system
X-band (3-cm wavelength)
altitude: $8,230 \mathrm{~m}$ (above mean sea level) azimuth resolution: 10 to 15 m

Digital Elevation Model of Puerto Rico

Target reflectivity

Synthetic-aperture radar (SAR) geometry

SAR image of Los Angeles, CA area.

ERS-1 Synthetic Aperture Radar f: 5.3 GHz ant: 10 mx 1 m $\Delta x=\Delta y=30 \mathrm{~m}$ orbit: 780 km
P_{TX} : 4.8 kW
B: 15.5 MHz
$\mathrm{f}_{\mathrm{s}}: 19 \mathrm{MSa} / \mathrm{s}$
$\mathrm{D}_{\mathrm{R}}: 105 \mathrm{Mb} / \mathrm{s}$

Nonlinear internal waves propagating eastwards and oil slicks can be seen.

Ka-band, $4^{\text {² }}$ resolution

Helicopter and plane static display

Frequency Comparison - Ku vs. UHF

SEASAT Synthetic Aperture Radar

 Launched: June 28, 1978Died: October 10, 1978 orbit: $\mathbf{8 0 0}$ km
$\mathrm{f}: 1.3 \mathrm{GHz} \quad \mathrm{P}_{\mathrm{TX}}: 1 \mathrm{~kW}$
$\tau: 33.8 \mu \mathrm{~s}$
B: 19 MHz
$\theta: 23 \pm 3^{\circ}$
PRF: 1464 to 1647 Hz
ant: $10.7 \mathrm{~m} \times 2.2 \mathrm{~m}$
$\Delta x=18$ to $23 \mathrm{~m} \quad \Delta y=23 \mathrm{~m}$

Figure 5-4. Example of radar image layover. Seasat image of the Alaska Range showing the top of a mountain imaged onto the glacier at its foot (center). Shadows are also present on many of the backslopes of these steep mountains. Illumination is from the top [from Ford et al., 1989].

SEASAT image of Ames, Iowa

Figure 5-6. Ames, lowa, with bright streaks due to rain-soaked ground

Fine resolution range imaging of a ground moving target
 \section*{MTI Image of a 2.5 Ton Truck}

Examples of SAR Imagery

Washington, D.C. mall area

Aerial photo, 8-m resolution (USGS)

SAR image, 1-m resolution (Sandia National Laboratory)

Examples of SAR Imagery

Capitol building, Washington, D.C.

Aerial photo, 1-m resolution (USGS)

SAR image, 1-m resolution (Sandia National Laboratory)

Multipass interferometry

Multipass interferometry. Same or similar SAR systems image common region at different times. Differences can be attributed to elevation (relief) or horizontal displacements. Third observation needed to isolate elevation effects from displacement effects.

Digital elevation mapping with InSAR

Image covers 18.1 km in azimuth, 26.8 km in range. The azimuth direction is horizontal.

Subsidence measurement

Earthquake displacements

On December 26, 2003 a magnitude 6.6 earthquake struck the Kerman province in Iran.

radar intensity image

differential interferogram

Multipass ENVISAT SAR data sets from June 11, 2003, December 3, 2003 and January 7, 2004. The maximum relative movement change in LOS is about 48 cm and located near the city Bam. ENVISAT SAR launched March 1, 2002
f: $5.331 \mathrm{GHz} \quad$ orbit: $800 \mathrm{~km} \quad$ antenna: $10 \mathrm{~m} \times 1.3 \mathrm{~m} \quad \Delta \mathrm{x}=\Delta \mathrm{y}=28 \mathrm{~m}$ 320 T/R modules @ 38.7 dBm each: 2300 W

InSAR Coherent Change Detection

Reference SAR Image: Grassy Field

Current SAR Image: Grassy Field

CCD Image - Changes denoted by dark areas

InSAR Coherent Change Detection

Single-pass interferometry

Single-pass interferometry. Two antennas offset by known baseline.

Topographic map of North America

Bi-static SAR

- Bi-static SAR places Transmitter and Receiver on separate vehicles
- Allows unusual geometries
- stationary transmitter or receiver,
- looking straight ahead

Radar Responsive Tag System

Chatlenges in radarn

Weak received signal power (spherical spreading loss) $\quad P_{R} \propto P_{T} /(4 \pi)^{2} R^{4}$

	Basketball court	Sear's tower	Jet aircraft	Space station	Moon
R	$(94 ') 29 \mathrm{~m}$	$(1450 ') 442 \mathrm{~m}$	$\left(30,000^{\prime}\right) 10 \mathrm{~km}$	360 km	$384,400 \mathrm{~km}$
$1 /(4 \pi)^{2} \mathrm{R}^{4}$	9×10^{-9}	1.7×10^{-13}	6.3×10^{-19}	3.8×10^{-25}	2.9×10^{-37}
$\mathrm{P}_{\mathrm{R}}{ }^{*}$	0.0009 W	$1.7 \times 10^{-8} \mathrm{~W}$	$6.3 \times 10^{-14} \mathrm{~W}$	$3.8 \times 10^{-20} \mathrm{~W}$	$2.9 \times 10^{-32} \mathrm{~W}$

* assumes $\mathrm{P}_{\mathrm{T}}=100 \mathrm{~kW}=10^{5} \mathrm{~W}$ (KANU effective broadcast power)

Noise (anything above absolute zero radiates thermal noise) $\mathrm{P}_{\mathrm{N}}=\mathrm{kTB}$
$\mathrm{k}=$ Boltzmann's constant ($1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$)
$\mathrm{T}=$ temperature in Kelvin (normal room temperature is $\sim 290 \mathrm{~K}$)
B = bandwidth (Hz)
Bandwidth impacts the ability to measure range accurately or to resolve multiple targets at similar ranges, otherwise we'd set B to a very small value.

Range resolution, ρ, is bandwidth dependent, $\rho=\frac{C \tau}{2}=\frac{C}{2 B}$

	10 Hz	1 kHz	200 kHz	10 MHz	300 MHz
P_{N}	$4 \times 10^{-20} \mathrm{~W}$	$4 \times 10^{-18} \mathrm{~W}$	$8 \times 10^{-16} \mathrm{~W}$	$4 \times 10^{-14} \mathrm{~W}$	$1.2 \times 10^{-12} \mathrm{~W}$
ρ	$15,000 \mathrm{~km}$	150 km	750 m	15 m	50 cm

Challenges in radar

Clutter (one man's trash is another man's treasure)
Example, when looking for subsurface targets (land mines, subglacial features, subterranean structures, etc.) the surface echo can obscure the desired echo.

Antennas (size \propto wavelength) Key properties include: frequencies of operation (bandwidth), beamwidth, polarization, steerability, size, weight, cost.

Different radar applications

- Weather radar (ascertains precipitation's location, intensity, and nature (snow vs. rain))
- Police radar
- Collision avoidance radar
- Ground-penetrating radar (archeology, geology, crime scene investigation, civil engineering, ...)
- Aircraft detection and tracking (military) (measures aircraft's altitude, speed, heading, type, ...)
- Projectile tracking (defense ICBM early warning radar, asteroid tracking, source of mortar fire)
- Imaging radar (geography, military, scientific exploration, surface elevation, etc.)

Radar research thrusts

- Making smaller, more versatile radars (programmable, low cost, network of radars)
- Designing optimum radar for particular application (looking for water/ice on Mars, characterizing Europa's icy shell)
- Advanced signal processing (clutter rejection, super resolution, autofocus, ...)
- Bistatic or multistatic radar (new capabilities because of new geometry, detecting stealthy targets)
- Passive radar (take advantage of transmitters of opportunity: TV, FM, GPS, DirecTV, etc.)

