

Center for Remote Sensing of Ice Sheets

Gases trapped in ice cores also tell us about changes in greenhouse gases in the past

Present day CO₂

Bubbles in ice hold samples of ancient atmospheres

Temperature \propto ^{18}O / ^{16}O

Temperature and greenhouse gas concentration go hand-in-hand.

5 of 30

CRESIS Center for Remote Sensing of Ice Sheets

European Project for Ice Coring in Antarctica (Epica)

Dome C, Antarctica

Drilled 2,774 m into the ice that is about 900,000 years old.

Results to 650,000 years ago published in December 2005 in the journal Science

The story is the same: temperature and greenhouse gas concentration go hand-in-hand.

Thermal Balance of Planet Earth -Radiative Equilibrium

$$T_{e} = \begin{bmatrix} F_{s}(1 - A_{e}) \\ F_{s} - E_{e} \\ A_{e} - E_{e} \\ \varepsilon_{e} - e_{B} \end{bmatrix}^{1/4} \qquad F_{s} - S_{e} \\ A_{e} - E_{e} \\ \varepsilon_{e} - e_{B} \\ \sigma_{B} - B_{e} \end{bmatrix}^{1/4} \qquad F_{s} - S_{e} \\ F_{s} - E_{e} \\ F_{s} - F_{s} \\$$

 $F_s - Solar Flux A_e - Earth's Albedo <math>\epsilon_e$ - emissivity $\sigma_B - Boltzmann Const.$

 $T_{e} = 255 \ ^{\circ}K$

Actual = $288.5 \,^{\circ}$ K

Outgoing radiation controlled by "greenhouse gases."

- Carbon Dioxide (increasing 0.4%/yr)
 - Recent results +0.68%/yr
- Methane (increasing 0.5%/yr)
- Nitrous Oxide (increasing 0.25%/yr)
- CFC's and HFC's
- Water vapor

Carbon Dioxide (CO₂)

Center for Remote Sensing of Ice Sheets

Methane (CH₄)

- Atmospheric concentration increasing by about 0.5% per year.
- Methane is 25 times more effective in absorbing IR than CO_2 .
- 14% of the warming is due to methane.

Other Factors in the Energy Balance of the Earth

- Oceans Can store vast amounts of energy and CO₂.
- Clouds Both a cooling and warming effect:
 - High clouds: net warming
 - Low clouds: net cooling
- Pollutants
 - Sulfate aerosols (light colored particles): cooling
 - Soot aerosols (black carbon): warming

Radiative Forcing Components

Numerical climate models are essential in considering all the complexities

Observations versus

By considering greenhouse gases, aerosols, and solar fluctuations, climate models do a pretty good job showing past temperature trends.

Blue shaded bands show the 5–95% range for 19 simulations from 5 climate models using only the natural forcings due to solar activity and volcanoes.

Red shaded bands show the 5–95% range for 58 simulations from 14 climate models using both natural and anthropogenic forcings.

Black line: decadal averages of observations for the period 1906–2005 plotted against the center of the decade and relative to the corresponding average for 1901–1950. 14 of 30

Global Temperature Change

Surface Temperature changes relative to 1980 – 1999.

AOGCM Projections of Surface Temperatures

Center for Remote Sensing of Ice Sheets

Larsen B Ice Shelf Collapse

Center for Remote Sensing of Ice Sheets

Increasing Surface Melt Extent

CRESIS Center for Remote Sensing of Ice Sheets

Snowfall – Input term to mass balance

Growth of cloud droplets begin with small particles – condensation nuclei.

Ice Crystal – up to few mm

Snowflake – up to 10 cm.

CRESIS Center for Remote Sensing of Ice Sheets

Bergeron Precipitation Process

Precipitation process that involves both ice crystals and liquid cloud droplets that co-exist at temperatures below freezing (Cold Clouds).

Ice crystals grow by deposition; droplets shrink by evaporation

"ice crystals grow at the expense of the surrounding water droplets"

Why do ice crystals grow and water droplets evaporate?

Saturation Vapor Pressure for water liquid and ice.

For a given temperature, liquid water has a higher saturation vapor pressure than ice.

This saturation vapor pressure "imbalance" causes water droplets to shrink, and ice crystals to grow.

Ice crystals

- Individual, single ice crystals, with hexagonal shapes.
- Grow directly from water vapor in the air.
- Microscopic to a few millimeters.

Snowflakes

Collections of snow crystals, loosely bound together (Aggregation).

- Can grow to large sizes (up to about 10 cm across)
- Largest sizes when the snow is wet and sticky (warm air temperatures).

Snow Crystal Shapes

Sectored plate

Hollow column

Dendritic sectored plate

Needle crystal

Stellar Dendrite

Columns and needles are often the main snowfall constituents.

Strange Snow Crystal Shapes

Capped Columns: starts growing as a column, then suddenly switches to plate-like growth.

Rimed Crystal: supercooled cloud droplets that freeze on a snow crystal.

Accumulation Radar: 0.5 – 2 GHz

CRESIS Center for Remote Sensing of Ice Sheets

Planewave Radar: 12 – 18 GHz

Sub-annual accumulation – look back about 10-20 years. 3 cm resolution 72.561N 38.487W 260.5 m 2.5611 2.5611 2.562N 8 485W 29 of 30

CRESIS Center for Remote Sensing of Ice Sheets

