Data Analysis

Matlab Tutorial

Cameron Lewis, GRA

National Science Foundation :: Kansas Technology Enterprise Corporation :: National Aeronautics and Space Administration
The University of Kansas | The Ohio State University | Pennsylvania State University
The University of Maine | Elizabeth City State University | Haskell Indian Nations University
Centre for Polar Observation and Modelling | University of Copenhagen
Technical University of Denmark | Antarctic Climate \& Ecosystems CRC

Agenda

Zwally et al., 2002, Science

- Motivation
- Background
- Analysis Methods
- Statistics
- Interpolation/Extrapolation
- Gridded Data
- Selection
- Visualization
- Examples

Motivation

Importance of polar regions

- Ice Sheets and Glaciers
- Melting contributes to sea level rise
- Importance of understanding mass balance
- Greenland loses 100 Gigatons annually ($100 \mathrm{~km}^{3}$)
- 360 Gigatons=1mm global sea level
- Snowfall accumulation is between $10 \mathrm{~cm}-2 \mathrm{~m}$ per year
- Importance of including polar regions in climate models

CReSIS

Definitions

- Data: measurements or observations of a variable
- Analysis: act of transforming data with the aim of extracting useful information and facilitating calculations

Background

- Data Analysis help the knowledge process come full-circle:

1. Science defines questions and hypotheses
2. Technology is developed based on this science
3. Measurements/observations are taken
4. Data analysis performed on measurements/observations
5. Conclusions drawn, added to science
6. New science used to drive new questions and hypotheses

Analysis Methods

- Statistics and curve fitting (regression)
- Interpolation/Extrapolation (modeling)
- Gridded Data (modeling)
- Selecting/Discarding subsets of data based on criteria
- Visualization (explorative analysis)

Statistics

- Myriad of statistical functions built into Matlab
- Probability distributions
- Descriptive statistics
- Linear/Non-Linear regression
- Plotting

CReSIS

Statistics

Statistics

- Commonly used functions:
- mean, geomean, range
- unifit, normfit, lognfit, poissfit, expfit
- dfittool, disttool, polytool
- boxplot, gscatter, normplot, pareto

Statistics

Curve Fitting

- Form of regression
- Linear regression is the simplest
- Built-in Matlab functions
- polyfit
- polyval

polyfit

$$
\begin{aligned}
& p=\operatorname{polyfit}(x, y, n) \\
& {[p, S]=\operatorname{polyfit}(x, y, n)} \\
& {[p, S, m u]=\operatorname{polyfit}(x, y, n)}
\end{aligned}
$$

\mathbf{x} and \mathbf{y} define points of measured data
\mathbf{n} defines order of desired regression polynomial
p array defining polynomial coefficients
\mathbf{S} structure defining error function parameters
mu two-element vector specifying first two moments

polyfit

```
* FOR TESTING - Reduce to first 10000 rows
iout = iout(1:10000,:);
fprintf('Fitting data to straight line\n');
* East-North data set
[north, east, height] = eastNorth(old_lat(l), old_lon(1), old_elev(1), old_lat, old_lon, old_elev);
* find slope of polyfit line
p = polyfit(east,north,l);
path_slope = p(1,1);
fit data to new coordinate
ortho_norm_vector = ([1 path_slope]/(1+(path_slope.^2)));
x_distance = ([east(1) north(1)] * ortho_norim_vector.');
for ENindex = 2:length(east)
    x_dist_TEMP = {[east(ENindex) north(ENindex)] * ortho_norm_vector.');
    x_distance = [x_distance, x_dist_TEMP];
end
```

- Find linear regression ($n=1$)
- Fit data points to that regression
- Decompose fitted points into east and north components
- Example: used in FK migration process so that DFT can be performed

polyval

$\mathrm{Y}=\operatorname{polyval}(\mathrm{p}, \mathrm{X})$
[$\mathrm{Y}, \mathrm{DELTA}$] $=\operatorname{polyval}(\mathrm{p}, \mathrm{X}, \mathrm{S})$
p array of polynomial coefficients defined by polyfit
X values for which Y values are defined
\mathbf{Y} desired values of \mathbf{p} function as desired by \mathbf{X}
DELTA error estimates $\rightarrow Y \pm$ DELTA

Interpolation

- Interpolation and Extrapolation are both handled via the interp functions
- interp1 (one dimension)
- interp2 (two dimension)
- interp3 (three dimension)
- interpn (n dimension)
- interpft (one dimension interpolation using the FFT method)

interp1

yi $=\operatorname{interp1}(x, Y, x i)$
yi = interp1($x, Y, x i, m e t h o d)$
yi = interp1(x,Y,xi,method,'extrap')
yi newly interpolated y values based on xi positions
x original data x vector
Y original data y vector
xi new \times position vector, used to define interpolation points method defines the interpolation method (i.e. 'linear', 'spline', 'cubic')

interp1

```
    if (ispc
    cid = load('P:\prism\radar\radar simulator\profiles\gisp2 dep 20030914.txt');
    else
    cid = load('/projects/prism/radar/radar simulator/profiles/gisp2 dep 20030914.txt');
end
acid_interp = 1e-6 * interp1(acid(:,1),acid(:,3),depthInt,'linear','extrap').'
condInterp = 1e-6 * interp1(acid(:,1),acid(:,2),depthInt,'linear','extrap').';
if (plotFlag)
lot(depthInt,1e6*acid_interp,'k-');
old = axis; axis([0 3047.9 old(3:4)]);
xlabel('Depth (meters)')
#label('Acidity (micromolarity)');
fprintf('Mean acidity = %f micromolarit\nabla\ \', mean(acid_interp)/1e-6);
pause;
plot(depthInt,1e6*condInterp,'k-');
old = axis; axis([0 3047.9 old(3:4)]);
xlabel('Depth (meters)),
glabel('Conductivity (uS/m)');
fprintf('Mean conductivity = %f uS/m\n', mean(condInterp)/1e-6)
pause;
end
```

- Interpolate ice acid content data to the predefined depth array
- Linear interpolation, with extrapolation of the acid content data for the extra points at the bottom of the ice sheet

Gridded Data

- Measured data is often random in both space and time
- In order for this data to be useful for selection/visualization/modeling, it must be fit to a grid that is evenly divided in both space and time
- Requires methods of interpolation (and sometimes extrapolation)
- Matlab provides functions for this:
- meshgrid
- griddata

meshgrid

$[\mathrm{X}, \mathrm{Y}]=$ meshgrid (x, y)
$[X, Y, Z]=$ meshgrid (x, y, z)

- Used to define a 2D or 3D grid [X,Y] based on \mathbf{x} and \mathbf{y}
- \mathbf{x} and \mathbf{y} must be monotonically increasing vectors
- meshgrid is required in order to define interpolation (and extrapolation) points for griddata

griddata

$\mathrm{Zi}=$ griddata($\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{Xi}, \mathrm{Yi}$, method,options)

$\mathbf{Z i}$ is the interpolated (extrapolated) \mathbf{z} values by remapping them from the original $\mathbf{x , y}$ system to the defined $\mathbf{X i}, \mathbf{Y i}$ system created with meshgrid
method defines the interpolation method

- 'linear'
- 'cubic'
- 'nearest'
options typically not used

20 of 32

Gridded Data

```
0
Cameron Lewis
* This program will create gridded data out of complete_bedrock
* Requires: complete_bedrock, complete_lat, complete_lon, and complete_elev
path(path,genpath('/ps3/matlab/support/geometry'));
file = load('/ps3/insar/results/complete_bedrock');
[north, east, height] = eastNorth(1.26672971, -0.671246297, 3252.3602, file.complete_lat, ...
[north, east,
north_min = min(north);
north_max = max(north);
east_min = min(east);
east_max = max (east);
[X,Y] = meshgrid(east_min:100:east_max, north_min:100:north_max);
Z = griddata(east, north, file.complete_bedrock, X, Y);
```


- Create gridded data of bedrock depth by remapping from track lines to grid
- Use imagesc, mesh, surf, etc to plot the results
imagesc

CReSIS

mesh

CReSIS

Selection

- Selection or deletion of a subset of data based on a criteria
- Example: find the bedrock depth by finding the first point, below 2600 m , that is 20 dB above the noise floor

24 of 32

AScope

CReSIS

Bedrock Locator

```
* Attempt 2: Threshold
* Look for first point that is 20dB above noise floor below point 7500
lol}\begin{array}{l}{\mathrm{ noise_floor = - -124;}}\\{\mathrm{ bedrock_sig = (noise_floor + 20);}}
bedrock_sig =
max rows = siz
max_rows = size(rds_data,1)
memory_spread = 40;
bedrock_loc = zeros(1,size(rds data,2))
for column = 1:size(rds_data,2);
    for row = start:max_rows
        value = rds_data(row, column);
        if((columun == 1) && (memory_in == 0)
        if(value > bedrock_sig)
            bedrock_loc(column) = row
            break;
        end
        elseif((column == 1) && (memory_in ~= 0))
        bottom = (memory_in - memory_spread)
        f((value > bedrock_mig)_spread)
        (valu
            bedrock_loc(column) = row;
        break
        elseif((column > 1) && (bedrock_loc(column-1) ~= 0))
        bottom = (bedrock_loc(column-1) - memory_spread)
        top = (bedrock_loc(column-1) + memory_spread);
        if((value > bedrock_sig) && (row > bottom) && (row < top))
            bedrock_10c(column) = row;
            nd break
        end
        lseif((column > 1) && (bedrock_loc(column-1) == 0))
        f(value > bedrock_sig)
            loc(column) = row,
            break;
        end end
    if(bedrock_loc(column) == 0)
        warning = sprintf('Warning: Lost bedrock at column %d', column);
        disp(warning) ;
    end
end
memory_out = bedrock_loc(column);
```

- Program acquires bedrock location in first column
- This is used as a starting point in the next column
- If bedrock is lost, program returns to acquisition step

Visualization

- Analysis of data through sight
- An important part of the analysis process
- Particularly used during explorative data analysis, where the analysis is driven by the data itself, as opposed to a hypothesis

Cross Sections

CReSIS

AScope

Thickness Chart

Slope Chart

Questions?

- Office: 315 Nichols
- Email: clewis@cresis.ku.edu

