Matlab Tutorial Figures, Plots \& Graphs

Victor A. Jara-Olivares

National Science Foundation :: Kansas Technology Enterprise Corporation :: National Aeronautics and Space Administration
The University of Kansas | The Ohio State University | Pennsylvania State University
The University of Maine | Elizabeth City State University | Haskell Indian Nations University
Centre for Polar Observation and Modelling | University of Copenhagen
Technical University of Denmark | Antarctic Climate \& Ecosystems CRC

Outline

- Introduction
- Scalar, Vector and Matrix
- Math operators in plots and graphs
- Types of Plots available in Matlab
- Examples: Stem command \& SAR
- Matlab demo window for graphs
- Questions?

Introduction

Example: Jakobshavn Preliminary data (May 2006, CReSIS (MCRS)

Introduction (2/2)

Matlab features can be used for:

- A visual interface between numbers, vectors, matrices (data)
- Plotting correlations between inputs
- Digital Signal and Image processing
- Surface (area) contour
- Frequency spectrum visualization
- Simulation of communications systems
- Etc.

Scalar, Vector and Matrix Concept Review

- Scalar: Vector 1×1 element
- A scalar will be plotted as a single dot? True or False?
- Vector: Scalar or a collection of them in an array by $1 \times n$ or $m \times 1$ elements, where n, m are integers.
- A vector will be plotted as a single dot? Right?
- Matrix: A collection of vectors. For convention, a matrix is denoted with capital letters.
- What will a plot of a matrix look like?

Scalar, Vector and Matrix (2/3)

- Why ‘ ": ; ([" ‘are important???
- Plot commands require vector or matrix dimensions agree. (Debug!!)
- Watch colon, semicolon and bracket notation when you perform a vector or matrix!
- Colon: can be use for producing row vectors:
- >> a=1:4 gives the vector a=1 234

Scalar, Vector and Matrix (3/3)

- Bracket: used to denote a vector with certain elements:
- >> b=[14] gives the vector $b=14$
- >> c=[1:4] gives the vector c = 1234
- Semicolon: used to separate rows or columns
- >> d=[1;4] gives the vector $d=1$ 4
- Don't know how to use them?
- Type "help\matlablelmat"

Math operators in plots \& graphs

- Dot operator ‘.'
- Matlab performs an element-by-element operation
- Example: $\mathrm{C}=\mathrm{A} / \mathrm{B}$ is the matrix with elements $c(i, j)=a(i, j) / b(i, j)$
- Should I watch the dot operator if I want to perform a multiplication, division, summation or subtraction? Yes, no? Why?

Types of Plots available in Matlab

Matlab can construct a wide variety of 2D \& 3D plots without any programming required on your part.

Some of the 2-D plotting functions are

- plot
: Create a linear graph
- loglog
: Create a logarithmic graph
- semilogx
: Create a semi-log scale plot
- polar
- subplot
: Create a Polar coordinate plot
: Create plots in tiled positions

Types of Plots available in Matlab(2/5)

barh (stacked)

Direction Graphs
Radial Graphs
Scatter Graphs

ezcontour

- For example, by typing 'help stairs' we can get a description about how this function works.

Types of Plots available in Matlab (3/5)

Some of the 3-D plotting functions are

- plot3 : Create plot lines in 3-D space
- mesh : Create a 3-D mesh surface
- surf : Create a 3-D colored surface
- fill3 : Create a filled 3-D polygons

Types of Plots available in Matlab (4/5)

Volumetic Graphs

- Again, for example, by typing 'help mesh' we can access the help menu with a description of how this function works.

Types of Plots available in Matlab (5/5)

Graph notation

- title : Label the graph title
- xlabel : Label the x axis
- gtext : Place text where the mouse is located

Example: Stem command

- Matlab assumes continuous signal (sequence)
- What about if I want to plot a discrete sequence?
- $\operatorname{stem}(x, y)$
- Example: Sine function.....

Example: Stem command (2/4)

clear all;
clg;
clc;
x1=-pi:pi/180:pi;
x2=-pi:pi/20:pi;
b1=5*sin $(x 1)$;
b2=5*sin $(x 2)$;
subplot($2,1,1$), plot($x 1, b 1$), grid on subplot(2,1,2),stem(x2,b2), grid on

Example: Stem command (3/4)

Random sequence

clear all;clg;clc
subplot($3,1,1$);stem(rand(100,1))
subplot(3,1,2);stem(10*rand(100,1)-5)
subplot($3,1,3$);stem(hist(10*rand(100,1)-5))

Example: Chirp waveform used for pulse compression (4/4)

Matlab demo window for graphs

Matlab demo window for graphs (2/4)

WiniCommand Window

Matlab demo window for graphs (3/4)

Matlab demo window for graphs (4/4)

Contour

Quiver

MiniCommand Window
\% Surface Plot of Peaks
$z=p e a k s[25]$]:
surf(z]):
Info
colormap(iet):

Mesh
Surf
Surfl
Contour
Suiver
Slice
Info
Close

National Science Foundation WHERE DISCOVERIES BEGIN

Questions?

$\sqrt{\text { EMCISU }}$

 -

