Matlab: Variables and Functions

• Peter Adany

- peter@cresis.ku.edu
- Room 314
- -<u>www.cresis.ku.edu/~peter</u>

NATIONAL SCIENCE FOUNDATION :: KANSAS TECHNOLOGY ENTERPRISE CORPORATION :: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

The University of Kansas | The Ohio State University | Pennsylvania State University The University of Maine | Elizabeth City State University | Haskell Indian Nations University

Centre for Polar Observation and Modelling | University of Copenhagen Technical University of Denmark | Antarctic Climate & Ecosystems CRC

Matlab: Variables & Functions

How do you use Matlab? Accessing Matlab help Variables & data types Functions – built in and diy Some useful functions Some examples

How do you use Matlab?

- Starting Matlab
 - Opens the command window
 - Shows the workspace, directory etc...
 - Open a file like MatlabTutorial.m in the text editor or start a new file
 - The file name can't start with a number.

How do you use Matlab?

- Running Matlab:
 - Write a script in the editor and then run it. ¹
 - The code compiles, then runs line by line.
 - You can also just type things in the command window.

Accessing Matlab Functions

• Matlab Help

- The main help reference

• From the command window:

– Type "help *function*"²

- Online: the Mathworks page – google "matlab help"
 - http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.shtml

Variables

Types

- The most basic type of variable in Matlab is the matrix, or array.
- Arrays³
 - Most common format for storing values
 - Strings such as 'hello' can be treated as arrays
 - Variables with a single value are treated as a [1x1] array and so on.
- Structs⁴
 - Used for data organization
- Cells⁵
 - Also used for data organization

Variables

- Scope
 - Local
 - All variables are local by default unless you declare them as global or persistent.
 - Global
 - All functions that also declare the variable as global can see the same value
 - Persistent
 - While running a program with repeated calls to the same function, the function will remember the old value each time it is called.
- Data type:
 - double, string, integer, binary, boolean etc...

Functions

- Many functions are built in.⁶
- The following formats apply:
 - function(input);
 - output = function(input);
 - [output1 output2] = function(in1, in2);

Functions

- Writing a new function in the editor⁷
 - The first line indicates that it is a function instead of a script file.
 - Save as "functionname.m" in work dir.

Some Useful Functions⁸

- linspace(), logspace()
- *min()*, *max()*
- *find()*
- reshape()
- circshift()
- round(), floor(), ceil()
- eval()

- *linspace(), logspace()*
 - Creates a linear array or log-spaced array
 - Similar to using 0:0.1:1

- *min()*, *max()*
 - Can be used to get min or max value from a variable
 - Also useful for 'clipping' arrays within specified bounds

• $find(x \ge y)$

- Returns the indices where the test is true.

- reshape()
 - Converts [N x M] array into [N' x M']
 - Useful to reorganize values to make computation easier

- circshift()
 - Rotates data values within array
 - Useful for implementing delays, etc

- *eval()*
 - Forces matlab to read the argument as a line of code
 - Useful when you don't know what a variable name will be, etc...

Using Functions in Matlab

- Tips:
 - -Avoid *for* loops
 - line-by-line operation is slow
 - Use higher level functions instead
 - If you do use a loop, pre-allocate all the memory
 Ie, DataOut = zeros(1,N);
 - Make it simple
 - There is a function out there for nearly everything

Example: FM Chirp Signal

- Generate a frequency sweep signal:
 - Time duration of 0.5 s
 - Sampling frequency of 44.1 kHz
 - Sweep from 25 to 500 Hz

Questions?

Thank You

• Peter Adany – peter@cresis.ku.edu

