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Coupled Airborne and Spaceborne 
Radar Programs
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Rocket Radar

Rocket Radar 
mounted on NASA 
CV-990.  (L-band 
only.)
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Radar scatterometer sees 
hurricane Katrina near Florida



6QuikSCAT Revealed Texas-Size
Loss in Arctic Perennial Sea Ice

12/21/2004 12/21/2005

• AGU GRL Paper L17501, Sep. 2006
• AGU Highlight, EOS, 87, Sep. 2006
• NASA/JPL/AGU Press Release

• Section 334: Nghiem (First author) 
Neumann (co-author)

• Others: Chao (328), Li (387),   
Perovich (Army), Clemente-Colón 
and Street (Navy/USCG/NOAA)

On major news 
networks and 1000 
radio stations in all 
50 states and in 
many countries 
over the world

NBC Nightly News
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CloudSat - On-orbit Quick-look Data

4-7

Typical Orbital Profile

Typhoon 
Profile
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CloudSat CPR Power Returns vs Underflying ER-2
cloud radar (CRS) Reflectivity Measurements
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Aquarius: Ocean Surface Salinity
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Titan SAR aboard Cassini Saturn orbiter
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Mars Advanced Radar for Subsurface and 
Ionospheric Sounding  (MARSIS) on ESA 

Mars Express

Mission/Goals
• Primary Goal: To characterize the surface and 

subsurface electromagnetic behavior/variation 
in order to elucidate the geology (Search for 
water, material property, stratigraphy, 
structure, etc) at global scales with penetration 
depth of up to 5 km.   

• Secondary Goal: To characterize the 
ionosphere of Mars

• NASA OSS, “follow the water”.

Technology Areas
• Large antenna size due to low HF operation 

frequency)
• Complicated Matching networks due to wide 

relative bandwidth (0.1-5.5 MHz)
• Low frequency (HF) operation close to 

ionospheric plasma frequency
• Instrument calibration
• Requires specialized on-board and ground 

post-processing algorithms for science data 
calibration
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RADAR COHERENT BACKSCATTER
Pixels in a radar image are a complex phasor representation of the 
coherent backscatter from the resolution element on the ground and 
the propagation phase delay

ρ

Image Pixel/Resolution Element

v

Radar 
Sensor

Propagation Phase Delay  

Image Pixel/ 
Resolution Element

Backscatter phase delay is coherent sum of 
contributions from all elemental scatterers in 
the resolution element with backscatter  
and their differential path delays 
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B

A1

A2

ρ + δρ

θ

h

ρ

z

Single Pass / Two Antennas
(Topography)

Repeat Pass / One Antenna
(Topographic Change)

Interferometry Basics

t1
t2

Δρchange
ρ(t1)

ρ(t2)

t1 t2

L-band to 
maintain 
correlation 
over time

Two antennas 
to minimize 
noise from 
changing 
surface and 
atmosphere
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Shuttle Radar Topography Mission (SRTM)

SRTM image of Yucatan showing Chicxulub Crater, 
site of K-T extinction impact.  Bottom image is from 
Landsat showing Merida

3-dimensional SRTM view of 
Los Angeles (with Landsat 
data) showing San Andreas 
fault

• Mapped 80% of Earth
• 30 m horizontal data points
• 10 m vertical accuracy
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• When imaging a surface, the 
phase fronts from the two 
sources interfere. 

• The surface topography slices the 
interference pattern.

• The random surface component 
of the phase nearly cancels 
because the SAR’s are very 
closely spaced, so the surface 
looks the same.

• The measured phase differences 
record the topographic 
information

Radar Interferometry

Bamler, 1999
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SRTM Data Collection: ScanSAR

• SRTM collected data in a SCANSAR mode
– Electronic beam switching in bursts of pulses to cover more swath
– Dual polarized independent channels allowed double width coverage
– ScanSAR gave another factor of 2

Data collected simultaneously on beams
1 and 3 and on beams 2 and 4.

HH VV

123
4

  
1 2 4 4 4 4 4 4 3 4 4 4 4 4 4 

225 km swath width composed
of four subswaths



SRTM Hardware and 
Electronics

SRTM Hardware and 
Electronics

Mast Length: 60 m 
Mast + Cannister Mass: 1000 kg
Total Payload Mass: 13,600 kg
Total Data Volume over 10 days: 12.3 TB
Number of tapes for recording: 300

Mast Length: 60 m 
Mast + Cannister Mass: 1000 kg
Total Payload Mass: 13,600 kg
Total Data Volume over 10 days: 12.3 TB
Number of tapes for recording: 300
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Summary Height Error HistogramsSummary Height Error Histograms

Data used: 

all GCP’s, 

NIMA Chips, 

Kinematic GPS

Data used: 

all GCP’s, 

NIMA Chips, 

Kinematic GPS

Data used:  

Kinematic GPS 
only

Data used:  

Kinematic GPS 
only

• Both the absolute and relative SRTM height accuracy requirements are met.

• Both the absolute and relative SRTM horizontal accuracy requirements are met.

• Both the absolute and relative SRTM height accuracy requirements are met.

• Both the absolute and relative SRTM horizontal accuracy requirements are met.



SRTM Resolution ImprovementSRTM Resolution Improvement

• Lake Balbina, 
Brazil

• Lake Balbina, 
Brazil

GTOPO30 DEMGTOPO30 DEM SRTM DEM with radar image overlaySRTM DEM with radar image overlay



SRTM Global ProductionSRTM Global Production
The topographic data generated by SRTM will be a standard for global 
topographic data for some time to come and provides a valuable data set for 
accessing future changes to the Earth’s topography. 

The topographic data generated by SRTM will be a standard for global 
topographic data for some time to come and provides a valuable data set for 
accessing future changes to the Earth’s topography. 
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Programmatics/Status
• A future NASA SAR/InSAR mission has 

been recommended by numerous Science 
panels

–There is a need for L-band Measurements
–There is a need for wider swath coverage and 
more rapid repeat orbits

Technology Areas
• Low-cost dedicated L-band radar
• Phase stable phased array or reflector
• ScanSAR interferometry algorithms 

and technology
• Interferometric calibration algorithms 

and verification

Mission/Goals
• Generation of a discrete times series of 

deformation data for the Earth’s deforming 
areas in vector image format

–100 m resolution, mm-scale relative statistical 
accuracy

–Imaging of Earthquakes, Volcanoes, and Ice 
Sheets: 1000 seismic events in 5 years

• NASA Earth Science strategic plans have 
called for measurements that can lead to 
understanding how the Earth’s surface is 
being transformed

• NSF EarthScope Program calls for similar 
measurements to complement in situ 
arrays

115 km SWATH

Orbit Track

Nadir Track

H

left-looking imaging times:  
T1+ n x 8 days, n an integer 

H

Adjacent
Orbit Track

Adjacent
Nadir Track

right-looking
T2+ n x 8 days, n

deformation
signal

340 km
 at equator
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Deformation InterferometryDeformation Interferometry

When two observations are made from the same location in space but at different times, 
the interferometric phase is proportional to any change in the range of a surface feature 
directly.

Δφ =
4π
λ

(ρ(t1) − ρ(t2 )) =
4π
λ
Δρchanget1

t2

Δρchange
ρ(t1 )

ρ(t2 )

t1 t2

Surface Deformation
of the 1999 Hector Mine 
Earthquake
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InSAR Measures Unreported 
Volcanic Activity

Darwin: + 22 cm

Wolf: +10 cm ; - 9 cm

Sierra Negra: 
+ 250 cm

0.5 Billion people live 
near volcanoes, many 
of which are not 
monitored and have 
unknown surface 
deformation and 
hazard potential

4-24
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A glimpse of the future:
The deforming continent

•EQs Mw 7.7, Mw 8.4, Mw 8.1

•Survey of 900+ volcanoes 
finds magma movement at 4 
”dormant” sites

Pritchard et al., 2002
Pritchard and Simons, 2002
Pritchard and Simons, 2004a
Pritchard and Simons, 2004b
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Repeat-pass Interferometry and Coherent Change Detection
L-Band low frequency improves correlation in vegetated areas

Most radars do well in areas of 
sparse vegetation

But maintaining correlation in dense 
vegetation requires longer 

wavelengths

C
or

re
la

ti
on

Frequency band
P- L- C- X-

Loss of correlation is due to:
• volume of vegetation
• movement of vegetation
• dielectric change (moisture)

Effective phase center

VHF

UHF

P-band

L-band

C-band

X-band
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Repeat Pass InSAR Experience
SIR-C L and C-band Interferometry
6 month time-separated observations to form interferograms
Simultaneous C and L band

Improved correlation at LImproved correlation at L--band reveals significantly band reveals significantly 
more of the changing earthmore of the changing earth
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Raw data shows creep on Hayward 
Fault

Removing creep signal yields measure 
of landslide slip

Hilley et al., 2004

Landslides in Berkeley using 
Interferometric Permanent Scatterers
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InSAR provides scientific insight that 
will save lives and property

High Resolution
Earthquake Hazard 

Information
(Stress Map)

Systematic Volcano 
Monitoring

Targeted retrofitting in 
high-risk areas

Early warning

Rapid response 
and recovery

Fundamental
Physics and Discovery

of Earth Surface Change

InSAR Data and 
Analysis

Modeling and 
Application

Planning and 
Preparation



Non-Linearity of the Crust Revealed by InSAR

4-30Peltzer et al, JPL, 1999
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Once the interferogram is formed and 
the phase successfully unwrapped the 
problem is identical to that of 
determining flow rates as is done 
currently with C-band, as shown.

L-band rapid repeat data will 
complement numerous operating or 
planned C-band and X-band sensors

C: ENVISAT; Sentinel; Radarsat-2
X: Terrasar-X; Tandem-X, Cosmo-
Skymed, Space Radar?

C-band;  Joughin et al., 2001

L-Band Interferometry Over Ice 
Sheets
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InSAR Observation Strategy

s

n

Repeat observations 
aimed at building 
time-series of 
deformation over the 
life of the mission

Modest resolution but 
extensive and rapid 
repeat

L-band to optimize 
coherence and 
sensitivity
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XB

XS

XS X B+

X B X B

ˆ x 

XP

BURST  START

BURST  END

Format

ScanSAR Processing for Repeat Pass 
Interferometry

Burst
Range

Compression

Burst (MS)
azimuth

Compression
X

*Format
Burst

Range
Compression

Burst (MS)
azimuth

Compression

Assemble
Burst

Interferogram 
Ensemble

Normal post-
processing

ESA
Data 1

ESA
Data 2

Sample of data from Envisat Beam 1 (of 5) 
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ScanSAR Processing for Repeat Pass 
Interferometry

Five Envisat Beams (350 km across x 200  km down) 
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Status of InSAR as a Mission

Previous proposals to NASA failed

- National priority
- Cost
- Cost credibility
- Competing SARs

Future proposals to NASA must await an opportunity

- NASA awaiting NRC Decadal Survey for Earth Science
- If InSAR is ranked high, NASA can make an opportunity

- High-cap Announcement of Opportunity
- Directed sustaining science mission
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UAVSAR: NASA’s Future Airborne Radar 
Science and Technology Testbed

Science
• Global and regional volcanic inflation, flooding, land and coastal erosion, fault strain, fire hazard, tectonic 

strain, precision topography
• Local continuous observation of deformation for prediction of eruption, landslide and flooding
• Provide crustal structure, high temporal resolution, regional deformation processes for increased predictability 

of earthquake and volcanic activity.

Salient Features
• Robust repeat pass interferometry for deformation 

measurements
• Fully polarimetric at L-Band (1.2 GHz,80 MHz BW)
• Initial tests on NASA’s Gulfstream III
• Plan for transition to UAV platform
• Steerable electronically scanned array antenna 
• Flight path controlled to be within a 10 m tube using 

real-time GPS and modified autopilot
• Autonomous radar operation in flight
• Flexible, light-weight, reconfigurable design

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

Instrument
Pod Internal

Layout

Volcanic
Surface

Deformation
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Electronic Steering of the Antenna

Benign Motion
Geometry Difficult Motion

Geometry

• Efficient batch processing assumes that the Doppler Centroid (direction the 
antenna is pointing) is not changing by more than a fraction of a beamwidth (7.5°
for UAVSAR) over a processing interval

• When the aircraft attitude changes too quickly data quality suffers. UAVSAR 
effectively attitude stabilizes the antenna through electronic steering. 
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Cross Track and Vertical Offsets with Desired Flight Cross Track and Vertical Offsets with Desired Flight 
Tube OverlaidTube Overlaid

10 m Tube

50 m Tube

• The third pass was by 
far the best pass and 
was indicative of the 
pilots learning to fly the 
aircraft more effectively 
using the GPS 
navigation display.

•The pilots were much 
better able to maintain 
position within the 50 m 
tube, however most of 
the time the aircraft was 
outside the required 10 
m tube. 
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UAVSAR System ParametersUAVSAR System Parameters

-20 dB  (-30 dB goal)Polarization Isolation

> 2.4 kWPower

>±20°Azimuth Steering

0.5 m range/1.5 azimuthAntenna Dimensions

Nominal Chirp/Arbitrary WaveformWaveform

1 to 12 bit selectable BFPQ, SelectableBits in ADC

Full Quad-PolarizationPolarization

2 m range, 0.8 m AzimuthResolution

80/100 MHz Chirp/NoiseBandwidth

L-Band 1217.5 to 1297.5 MHzFrequency

ValueParameter
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High Level ArchitectureHigh Level Architecture

• Overall System Configuration

Autopilot

Ground Data
System

Radar DGPS

INU Antenna
Pod

DC Power

GPSA/InmarSAT
Antenna

Iridium

Platform

Radar

DGPS

GDS

Radar Operator
Workstation

(ROW)

Gulfstream-3
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Deformation Performance EstimatesDeformation Performance Estimates

• At 20 m x 20 m resolution cells, 
deformation measurement accuracy is 
dominated by uncertainty of the 
terrain knowledge (assuming SRTM 
level accuracy) coupled with the flight 
path repeat error.

• Improving knowledge in terrain height 
through improved topography maps 
or 3 pass techniques will improve this 
error.

Displacement 
Error (mm)Error Contributor

1.0Flight Path Uncertainty*

1.0Geometric/Temporal 
Decorrelation

0.6Instrument Phase

5.5Topo Uncertainty

0.2SNR Decorrelation

Deformation Error Budget

Source of Displacement Error

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

-5.00 0.00 5.00 10.00 15.00 20.00
Distance along swath (km)

Displacement Error - Decorrelation Displacement Error - Topography
Displacement Error (total) Max Swath
Min Swath

* Relative repeat pass flight path knowledge 
derived from fit of the image displacements.  
Results will be scene dependent
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Repeat Pass Deformation
Land Cover Classification

Soil Moisture Studies
Geology

Repeat Pass Deformation
Land Cover Classification

Soil Moisture Studies
Geology

Vegetation Structure
Hydrology

Repeat Pass Deformation
Land Cover Classification

Soil Moisture Studies
Geology

Vegetation Structure
Hydrology

Cold Land Processes
Ocean Studies

Increased Capability

Single Antenna L-band 
Polarimetric Radar

L-band Polarimetric-
Interferometric Radar

Multi-Frequency Polarimetric-
Interferometric Radar

Increased Science Application
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A Bright Future for SAR in the US?

HYDROS - Global Soil Moisture

L-band HH/VV Spinning 
Radar/Radiometer

HYDROS - Global Soil Moisture

L-band HH/VV Spinning 
Radar/Radiometer

With or without InSAR, earth scientists require 
radar observations from space

It’s only a matter of time…

With or without With or without InSARInSAR, earth scientists require , earth scientists require 
radar observations from spaceradar observations from space

ItIt’’s only a matter of times only a matter of time……

UHF SAR - Carbon Stock and variability
6 MHz bandwidth
P-band Quad Pol

UHF SAR UHF SAR -- Carbon Stock and variabilityCarbon Stock and variability
6 MHz6 MHz bandwidthbandwidth
PP--band Quad band Quad PolPol
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Firn

Glacial
Ice

Bedrock

~80m

~500-
3500 m

L vs. C-band Penetration

C L 

Slightly increased penetration at L-band not a significant factor in performance
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C-Band

L-Band

SIR-C L- vs. C-Band Correlation

Rignot, et al., 1996

San Rafael Glacier, Patagonia, Chile
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Fringe Rate

C-band 24-
day RadarSat

C-band 1-
day ERS 
Tandem

0 5 10 15 20 25
0 20 40 60 80 100

• The fringe rate determines whether 
phase can be unwrapped.

• The fringe rate for ECHO 8-day 
data will be equivalent to 2-day C-
band data.

• Speckle tracking can be used in 
place of phase data where needed. 

Issues Related to Phase 
Unwrapping

C-band
L-band

Nominal 8-day repeat


