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The  distribution of stress and  velocity in 
glaciers and iee-sheets 

H. H. Wills Physical Laboratory, University of Bristol 

(Communicated by M. 3'. Perutx, l7.R.S.-Received 20 August 1956 
-Read 8 November 1956) 

A block of ice resting upon a rough slope forms a theoretical model of a glacier or an ice- 
sheet, the sides of the glacier valley being ignored. Previous papers have described two types 
of steady flow in this model: ( a )laminar flow, in which the longitudinal velocity gradient r is 
zero, and (b)extending or compressive flow, in which r is non-zero. ( a )was derived under the 
assumption of a general flow law for ice, but ( b )was only derived under the assumption of 
perfect plasticity. I n  the present paper a general flow law is used throughout, and the 
equations for steady flow, with r allowed to be non-zero, are found. The previous results 
(a )and (b)appear as special cases. Possible variations of density, temperature or flow law 
with depth are allowed for. If the density and the flow law are known as functions of depth 
in any region, and if the surface slope, the surface velocity, and the value of r are known, the 
equations give the stresses and velocity as functions of depth. 

The borehole experiment on the Jungfraufirn (1948-50) allows an experimental test. 
From the observed value of r, and Glen's laboratory flow law for ice, a theoretical curve for the 
result of the experiment is calculated which is compared with the experimental curve. At 
a depth of 50 m the effect of ignoring r ,  as has been done hitherto, is to underestimate the 
shear rate by a factor of 50; on the present theory it  is overestimated by a factor of 1-33. 
The remaining discrepancy is probably mainly due to the effect of the glacier sides. 

The motion of a glacier or an ice-sheet takes place partly by sliding on the rock bed 
and partly by a process of continuous distortion within the ice itself; the distortion 
is caused by the stresses set up in the ice by its own weight. In this paper we examine 
theoretically the distribution of stress and velocity within the moving mass and 
compare the result with experiment. 

The flow law of ice has recently been investigated by Glen (1955), who applied 
uniaxial compressive stress to cylindrical polycrystalline specimens and measured 
the compressive strain rate. Prolonged application of a stress n between 1 and 
10 bars (1 bar = lo6dyn produces a strain rate 6' given by 

where n equals 3.2 or 4.2 according to how the tests are interpreted, and A' is a 
constant for a given temperature. If ice behaved like a liquid showing Newtonian 
viscous behaviour, n would be equal to 1; if, on the other hand, it behaved like 
a perfectly plastic material-that is to say, if it had a sharp yield point and showed 
no subsequent strain-hardening, or strain-rate hardening-n would be infinite and 
the yield stress would be A'. In fact, as the experiments show, ice is intermediate 
in behaviour between these two extremes. 
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We shall first consider, as a model of a glacier, a long parallel-sided slab resting 
on a uniformly inclined rough plane. It is simplest to assume that the flow in this 
model is laminar; that is, the upper layers shear over the lower layers so that each 
element is deformed in simple shear. This was the tentative assumption made by 
Gerrard, Perutz & Roch (1952) to interpret their measurement of the velocity 
distribution along a vertical line through a glacier. The equations for laminar flow 
under the flow law (S), which are quite straightforward, are given elsewhere 

( N Y ~1952"). 
In an earlier paper (Nye rggs), which will be referred to subsequently as (I), 

a different theoretical approach to the problem of flow in this model was made by 
idealizing the observed flow law to that of a perfectly plastic substance (n+ co). It 
was found that laminar flow degenerates into 'plug flow'; the block moves down as 
a rigid body and all the shearing is concentrated into an infinitesimal layer at  the 
bottom. But the main interest of the perfectly plastic case centres in the fact that, 
in addition to plug flow, two other sorts of flow are possible, called extending flow 
and compressive flow. In extending flow the forward velocity of the glacier increases 
as one goes down glacier, because the ice is being extended longitudinally; in com- 
pressive flow the velocity decreases because the ice is being compressed. In plug 
flow (and laminar flow) no longitudinal extension or compression occurs. In  both 
extending and compressive flow the longitudinal velocity profile is one quadrant 
of an ellipse. 

These solutions obtained for the perfectly plastic material seem to be of practical 
significance in glacier flow. In the first place, the extending solution leads to a 
natural explanation for the existence of transverse crevasses. Secondly, longitudinal 
extension and compression is commonly observed to take place in glaciers flowing 
in parallel-sided valleys-it would be surprising if it did not-and a theory of glacier 
flow should therefore include the effect. Moreover, the observed rates of strain 
associated with the extension or compression may be of the same order of magnitude 
as, or greater than, those due to the shearing motion of the upper layers over the 
lower; for example, the results from the Jungfraufirn described in $10 show that 
the longitudinal rate of strain is greater than the tensor shear strain rate throughout 
almost the entire thickness of the glacier (down to a depth of 133 m in a total depth 
of 137 m). 

It is therefore necessary to examine the connexion between the laminar flow 
obtained with the observed flow law and these other two types of flow obtained under 
the simplifying assumption of perfect plasticity. In  particular, we may ask whether 
a type of flow may exist in glaciers in which some sort of extending or compressive 
flow is superimposed on a laminar flow. In the present paper we find that there are 
solutions of the flow equations which describe precisely this behaviour. Laminar 
flow turns out to be the special case in which the rate of longitudinal extension goes 
to zero. The theory is set up for a general relation between stress and strain rate, 
which can be specialized to the form (1)when required, and it proves possible to 
take account both of a variation of temperature and of density with depth. The 
previous results for perfect plasticity are included by allowing n to approach infinity, 
and in this way the transition from the perfectly plastic case to the more realistic 
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case with n equal to about 3 or 4 can be followed continuously. A feature of practical 
significance in the solutions is that they furnish an equation for the longitudinal 
velocity profile which can be checked in the field by a borehole experiment of the 
Gerrard, Perutz & Roch type. 

The following general flow theory is the same as that already used for the analysis 
of the slow closing of glacier tunnels (Nye 1953) except that body-force terms are 
included from the beginning, and the restriction to homogeneous material is removed 
in order that the theory may be applicable to more general situations. There is 
a close formal similarity to the theory of plasticity (Hill 1950). 

At a general point in the body let p be the density, crij the components of stress, 
tensile stresses being positive, and u, the components of velocity, with respect to 
rectangular Cartesian axes Ox, fixed in space (i= 1,2,3). The equations of slow, 
quasi-static motion of an element are then 

the summation convention being used for repeated suffixes. giare the components 
of the gravitational acceleration g. 

The rate of strain, or velocity gradient, tensor at  the point has components 

We postulate, following the usual procedure of the theory of plasticity (Hill, 
chap. 11), that the rate of strain tensor at  a point is, to a first approximation, 
unaffected by a hydrostatic pressure superposed on the stress a t  the point. We 
therefore let eijdepend only on the deviatoric part of the stress tensor (the stress 
deviator) rather than on the stress tensor itself. The stress deviator has components 

where = I if i = j ,  and 4, = 0 if i$.j. 
Next, assuming the material to be isotropic at  every point, we postulate that the 

ratios of the strain-rate components depend only on the ratios of the components of 
the stress deviator and not on their absolute magnitudes. Thus we set 

where h is a scalar factor that depends in general on position and time. We note that 
this assumption implies incompressibility: ei, = 0. Equation (5)is analogous to the 
LBvy-Mises relations in the theory of plasticity. It is not the most general assump- 
tion that might be made for an isotropic material (see, for example, Truesdell 1950, 
1952), but it is sufficiently general for the present purpose. Greater mathematical 
refinement is hardly justified a t  present in view of the other differences that exist 
between ice and our hypothetical material. 

8-2 
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In order to introduce a flow law for the material we define an 'effective shear 
stress' r ,  and an 'effective strain rate' 8 of an element, in terms of the second 
invariants of the stress deviator and the rate of strain tensor, thus 

both r and 8 being always positive. This definition of 7 in terms of the second 
invariant corresponds to the Mises criterion of yielding in the theory of plasticity. 
(A more general flow theory would include the third invariant as well. The first 
invariant vanishes.) r ,  thus defined, equals J# times the octahedral shear stress. 

We now postulate that for each element of ice a functional relationship exists 
between B and r ,  namely, 

8= f(r). (8) 

This is the flow law. In  some of the work we shall consider ice masses which are 
homogeneous in properties, so that the same function f (7) will apply at  all points 
and all times. However, in more general cases, where the temperature, the texture 
and the density of the ice vary in space and time, f(7)will also vary. To take account 
of this we shall regard the spatial and temporal variation of the flow properties, 
oaused by difFerences of temperature, texture and density, as given at the beginning 
of the problem. I n  other words we assume that sufficient physical conditions are 
known at each point to determine the flow law at the point. If, in addition, we have 
succeeded in finding r,  then the flow law gives 8. (A more ambitious analysis would 
solve the heat-flow and the ice-flow problems together, but we shall not attempt this 
here.) This completes the postulates of our general theory. 

(By using the stress deviator we have excluded any direct effect of hydrostatic 
pressure on the flow. But it may be noted in passing that, if the distribution of 
hydrostatic pressure is known in advance, any effect it might have on the flow 
properties could be included in exactly the same way as the effect of any other non- 
uniformity, that is, by allowing f(r)to change from point to point.) 

At any point we have, from (7) ,  (5) and (B), 

and therefore 8 = AT. (9) 

The value of h is thus f (7)/r, and so from (3) and (5) we obtain 

1 3% a~ f ( ~ )
- -+> =-.
z(a3 a,) vij. 

Equations (lo),where r and are given by (6) and (4),together with. equations (2), 
form nine equations for the determination of the values of the nine unknowns rij 
and .uia t  any instant. 

Special case of power law. If, as suggested by Glen's experiments already 
referred to, 
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where, for a given element of ice a t  a given temperature, A and n are constants, 
we have 

For n = 1 the equations reduce to those for an incompressible Newtonian liquid 
of viscosity *A;while for n+m, as discussed elsewhere (Nye 1g53),the equations 
reduce to those for a perfectly plastic material of constant yield stress 7 = A. Ice 
thus appears as intermediate in flow properties between these two extremes. For 
the special case of uniaxial compression this last conclusion follows directly from 
Glen's experiments, as we have seen. The theory outlined above represents, in 
effeck, the simplest, but not the only possible generalization of the same result to 
three-dimensional states of flow. 

. .  .
We write x, y, x for xi;u, v, w for u6; rx,  rv ,  o;,T,~, ,ry8,rS,for rij; ix,kv, E,, eZv, ev8, 

&zx for ci,i. Take Ox horizontal, so that g, = g, = 0, and consider a state of plane 
strain in which movement is confined to the xy plane. The velocities and stresses at  
any instant are functions of x and y only, and we have w = 0, r,, = T,, = 0. Hence 
the first two of equations (2) become 

Since = 0,it follows from (5)that a: = 0, and hence, from (4), o;= +(o;,+ cry). 
The remainder of equations (5)become 

Finally, equations (6) and (7) take the form 


4r2 = (r,-rJ2+ 4?iv, 


and 

We may note in passing that, since each element is deformed in pure shear, only 
the relation between the stress on an element and the strain rate in pure shear is 
needed-not the full relationship applicable to a general stress situation. 

4. THEFIRST MODEL AND THE STRESS SOLUTION 

The first model to be considered (figure 1)is a block of ice of infinite extent and 
uniform thickness resting on an inclined rough plane of slope angle a. The problem 
is to  calculate the possible distributions of stress and velocity, at  any instant, for 
the slow flow of the block. 
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Take axes with the origin on the upper surface of the block, with Ox horizontal 
(as before), with Ox pointing down the line of greatest slope and with Oy perpen- 
dicular to the surface and pointing downwards. Then 

Movement is supposed to be entirely in the xy plane. We take p to be a known 
function of y but to be independent of x. 

FIGURE1. The first model, showing notation and the positive sense of the 
stress components. 

The assumption is now made that both r and r, are functions of y only and not 
of x. This step is crucial, for it makes possible a self-consistent solution of the 
equations in two stages. First, we find a stress solution of equations (13) and (14) 
in terms of r , which is thus far an undetermined function of position. Secondly, we 
substitute this stress solution into equations (15) and so obtain a velocity solution, 
which will also be in terms of r. The velocity solution is then used to find the dis- 
tribution of 6, again in terms of 7. Then by using the functional relationship (8)we 
obtain the distribution of r . The stress and velocity solution is then determinate. 

The stress solution referred to is closely similar to that given by Prandtl (1923) 
and discussed by NBdai (1931)for a block of perfectly plastic weightless material 
compressed between two parallel rough plates. In  the Prandtl solution r is a constant 
and there are no gravity terms. However, it is found that a variation of r with y may 
be introduced without essentially changing the form of the solution. The effect of 
the gravity terms has already been dealt with in (I)for constant p; but in a similar 
way it turns out that a variation of p with y does not cause any essential difficulty. 
The stress solution is as follows:, 

where is the average density between the depth y and the surface y = 0, so that 

$9 = pdy. The boundary conditions used are that on y = 0, r ,  = 0 and a, = 01,"

(the effect of atmospheric pressure would be simply to add a constant to a, and a,). 

If the material is perfectly plastic, n-tco and r is a constant, and if p is also 
a constant ( r p ) the solution reduces to that given in (I).The choice of signs bcfore 
the square root in fact gives two solutions. The upper sign corresponds to the active 
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Rankine state in soil mechanics and to "extending flow', while the lower sign 
corresponds to  the passive Rankine state and to ' compressive flow ' . Henceforth the 
terms extending and compressive flow will be used for the two solutions even when 
r is not a constant; and whenever there is a choice of s i p s  in the expressions that 
follow, the upper sign will refer to extending and the lower sign to compressive flow. 
All radicals are to be taken positive. 

stress componerlts 

compressive tensile 


----l-----h----
 .-,
 (---- -h-- 7 

FIGURE Stress components as functions of depth Y, measured in dimensionless units, for 2. 
uniform density and a power law of flow. The distribution of u, is given by the double 
family of full curves; each value of n gives one curve for extending Bow and one for 
compressive flow. The distributions of u,and T,, are shoam by the broken lines and are 
the same for all .I&. All curves are drawn for a slope of a = 14' 2' (cot cr = 4) and the units 
are such that c = 1. 

The variation of C T ~ ,o; and r,, with depth is shown in figure 2 for p const.ant. The 
depth is measured in dimensionless units to be defined later. The curves for o;, 
cannot be established until r is known as a function of y, except for the semi-ellipse 
corresponding to %-+Go. This curve, already known from (I),may be deduced 
immediately by putting r constant in (19). 

5.  THEVELOCITY SOLUTION 

Solutions of equations (15), using the expressions for the stress components given 
by (19), can be found by taking avlax = 0,  an assumption which is compatible with 
the condition v = 0 at the lower surface of the block. Then we have 
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Equations (20) may be integrated as follows. Eliminate h to give 

Then, differentiating with respect to x and putting avlax = 0, we have a2ulaxay = 0, 
and hence a2v/ay2 = 0. We thus write 

where a, and a, are constants for the instant considered. 
We now have, using (21), 

and, integrating, 

where (u), is the value of u at  the origin. 
Prom equations (20), h is given by 

Now, for a positive rate of work at every point, h must be positive. We therefore 
give a, the values T r, where r is a positive constant. r is equal to the longitudinal 
strain rate of the block, for au/ax = tr. The velocity solution at any instant is thus 

where h is the thickness of the block; a, has been chosen so that v = 0 on the lower 
surface (loss of ice by melting at the lower surface could readily be allowed for by 
adjusting a,). We note that the velocity components at  the upper surface (y = 0) are 

u = + rx + (u),, v = + rh. 

It is interesting that the linear variation of v with depth, already familiar from the 
perfectly plastic case, is preserved in spite of the variable p and T.  

To evaluate the integral in the expression for u we need to know p and T as 
functions of y. p is supposed given as one of the conditions of the problem; T at each 
point is determined by the flow law of the ice at  that point and by the effective 
strain rate 6. 6 is found from (17) as 

and so, using the value of aulay now obtained, 
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Thus 6 does not depend on x and, to be consistent, we must stipulate that the form 
of the function f (T), hitherto allowed to vary from point to point of the material, 
does not depend on x. If the constant r is given, ifp is known as a function of depth y, 
and if the f o m  off (7)is known for each depth, equation (24) allows T to be deter- 
mined for each depth. The integral in (22) may then be evaluated and hence the 
velocity distribution determined. 

A more compact expression for u is obtained by substituting from (24) into 
(22); thus 

6. SPECIALCASE: POWER LAW AND UNIFORM DENSITY 

To make clearer the meaning of the solutions it is useful to consider the special 
case when f (T) has the form (1 I), A and n having the same values for all points of the 
block, and when p is constant; for the integration in (22) can then be performed 
analytically. In this case equation (24) may be written 

It is convenient to introduce units of strain rate, stress, length and velocity which 
are characteristic for the problem. First define a unit of strain rate ro by 

9" = cro, (27) 

where c is dimensionless. ro here has an arbitrary value; but for most purposes 
c will be taken as equal to 1, so that the unit of strain rate chosen is simply the 
longitudinal strain rate of the block r. However, we shall later want to consider the 
special case where r is zero, and so c is introduced to prevent our unit of strain rate 
becoming zero. 

Let the unit of stress robe given by 

Yo = k)". 
Let the unit of length be 1, = ro/pg, and the unit of velocity vo = roE,. Hence we 
define the dimensionless variables 

The velocity solution (22) is then written 

U = 2c x  -2cS YdY 
+( U)O,

0 J(T2-Y2) 

Equation (26) takes the form 

an equation which gives the effective stress T as a function of depth Y. Taking c = 1, 
this relation is plotted in figure 3 for n = 1,3,10 and n-tco; T = Y is an asymptote 
of all the curves. The curve for n = 1is part of a rectangular hyperbola. 
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The integral in (28)is now evaluated by using T as the variable. From (30) 

and so we obtain 
(Tn+c2(n-l)T-71)dT+(U)o, 

and, carrying out the integration, 

U = & cX --
2 

{T"+l- c2(n + 1) TI-n +ncl+un)+ (U),.
n+ 1 

FIGIJRE3. Effective shear stress T as a function of the depth Y, both quantities being 
expressed non-dimensionally, for uniform density and a power law of flow. c is taken 
equal to 1. 

T can be eliminated between (31)and (32)so as to give U as a function of X and Y, 
but the resulting expression is long and clumsy. It is better to regard T as an inde- 
pendent parameter connecting U with X and Y through the two equations. Taking 
c = 1, curves of U as a function of Y are plotted in figure 4 for various values of n. 
If r, A, n,p and g, are specified, the curves in figure 4 give the longitudinal velocity 
profile of the block, except for an additive constant directly proportional. to x. 

Limiting cases 
(i) Longitudinul strain-rate zero 

We treat the case r = 0 by putting c = 0. I n  equation (30),since T cannot be zero 
everywhere, we must have T = Y for all Y and n. Hence tlie velocity distribution 
(32)and (29)takes the simple form 
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In terms of measurable quantities this is 

which is the velocity distribution for laminar flow (Nye 1952a, equation (2 ) ) .  
The only reason for introducing c in equation (27) was to make possible this 

demonstration that laminar flow is a particular case of the more general velocity 

FIGUEE4. Longitudinal velocity U as a function of depth Y, both quantities being expressed 
non-dimensionally, for uniform density and a power law of flow. The curves are drawn 
for X = 0; (U),,is the surface velocity a t  X = 0. c is taken equal to 1. 

distribution for exte~ding and compressive flow. Por all other cases we may take 
c equal to 1 without loss of generality, and henceforth we shall do so, putting 
therefore r,  = r. 

(ii) Newtonian liquid (n= 1, viscosity +A) 

Here equation (31)becomes 
y2= T 2-

3 

and (32)gives U = i-X- Y2+(U) , .  

Thus, in terms of the original variables, the velocity distribution is 

This parabolic relation between u and y is the same as is obtained by putting n = 1 
in equation (33)for laminar flow. Thus, when n = 1the presence of the longitudinal 
strain rate r does not essentially alter the velocity profile; the motion is simply 
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laminar flow with a uniform longitudinal and vertical strain rate superimposed 
upon it. It is hardly surprising that such a linear superposition of motions does not 
take place when the flow law is not linear. 

(iii) Perfect plasticity (n+ m, yieZd stress = A = 7 )  

As n-tm, T - t l  for Y Q 1 and T - t Y  for Y > 1  (figure 3 ) .  The limit must be 
approached cautiously. For the region Y 6 1 we cannot simply put T = 1 and 
n infinite in ( 3 1 ) and (32)because 5''" approaches different values for different Y .  
Instead we return to (28)and (29), put T = 1 and integrate to obtain 

U = + X + 2 { , / ( 1 - Y 2 ) - l ) + ( U ) ,  if 0 <  Y 6 1 ;  U + m  if Y > 1 ;  

V = T (Y -Ybed). 

The velocity profile for 0 < Y < 1 is thus one quadrant of an ellipse, as shown in 
figure 4, and as already found in the previous analysis (equation (9) of (I)). 

7. THESTRESS DISTRIBUTION 

(i) Geneml Jlow law 

Since T is now known as a function of y the first of equations (19)gives CT, as 
a function of y. 

(ii) Power law and uniform density 

We write the first of equations (19)in the system of dimensionless variables (with 
p constant) as crx/ro= - Y cot a 5 2 J(T2- Y2).  

T being known as a function of Y (figure 3),this equation gives c,/T, as a functioi~ 
of Y ;the relation is plotted in figure 2 for an arbitrary slope of 14"2' (cota = 4). 
On Y = 0, CT, = + 27, for all values of n. The characteristic unit of stress T ,  may 
thus be identified as one-half of the longitudinal stress in the surface. 

When n = 1, CT, is readily seen to be linear in y, as might be expected in view of 
the straightforward superposition of motions that occurs in this case. When n-t m 
the curve for CT,(06 P Q 1 )  is part of an ellipse, as already noted. 

8. D~scussro~ 

The solutions obtained for the cases where n lies between 1 and infinity are very 
sinlilar in their general features to those already found in (I)for the perfectly plastic 
material. It thus appears that, unless r = 0, and apart from any addition or sub- 
traction of material at  the upper surface, the block is either uniformly thinning or 
thickening according to  whether the upper or the lower sign is taken in the various 
expressions. Since there is no change in volume, this must necessarily be accom- 
panied by a longitudinal extension or contraction of the block as a whole, represented 
by the term + rx in the first of equations ( 2 2 ) .Just as for a perfectly plastic material, 
the distribution of u with depth is independent of the sign of the longitudinal strain 
rate. 

No boundary conditions on the tangential velocity, or on the shear stress, have 
so far been imposed at the lower surface of the block. This question will be taken up 
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below. It would appear that, provided the constant in the expression for v is 
suitably adjusted, the solution can be extended downwards from the upper surface 
indefinitely, and that we are free to place the lower boundary at whatever depth 
we Like. 

The main feature of a real glacier that is omitted in our model is the variation in 
the x direction-that is to say, the influence of the valley walls. The greater the 
width of the glacier in comparison with its depth the better the approximation, and 
for an ice-sheet the approximation should be very good. A discussion of the general 
effect of the valley walls has been given in other papers (Nye 1952a,b). 

The quantity r is fairly easily measured directly on a glacier. Once it is 
known the longitudinal velocity profile can be calculated. In  real glaciers and ice- 
sheets-the word glacier will refer to both in most of what follows-the slope and 
other conditions of course vary with x, and are not constant as in our model. How- 
ever, our solution should approximate to the true state of affairs even when the 
slope and other conditions do change, provided the changes are small in a distance 
equal to the thickness of the glacier. This has been shown in detail for the perfectly 
plastic case, and presumably it is also true for the more general case. From this 
point of view the present theory is to be regarded as giving essentially the local 
differential motions of a glacier. Thus the variation of u with y calculated with the 
local values of the various parameters should be a good approximation. The linear 
variation of u with x, on the other hand, cannot be expected to hold in a real glacier 
for any considerable distance. 

When deciding what values of the various parameters should be used at a 
particular place on a real glacier, the question arises as to what value of the slope to 
use; for, in general, the slope of the upper surface a,, say, and of the bed a,, say, will 
be different. It is assumed that (a,-a,) is small. The question of which to use is not 
important if both a, and a, individually are large compared to their difference, but 
the distinction becomes critical if a, and a, individually are of the same order as the 
difference between them. As an extreme example of this consider an ice-sheet 
resting on a horizontal bed, so that a, = 0. The difference between putting 
rZy= -pgy sin a, and r,, = -pgy sin a, is then the difference between having a 
finite driving force for the shear motion and none at all. In  fact it is the slope of the 
upper surface that must be used, as can be seen as follows. If, in the model with 
which we started, a, is the slope of the upper surface, the whole analysis proceeds 
with this value, the x axis is parallel to the upper surface, and the solution is 
developed from the upper surface downwards. Finally, we have to terminate the 
solution by inserting the bed of the glacier. If the slope of this is a, there is no 
difficulty. If, however, the slope of the bed a, is slightly different from a, the 
stress and velocity solutions are still good approximations, provided a small 
modification is made in the velocity solution. The modification is necessary 
because the boundary condition on the bed is no longer v = 0, but that the velocity 
should be parallel to the bed. The matter is put right by adding to v a com- 
ponent equal to u(a, -a,). (Note that, if r = 0, this addition makes the velocity 
parallel to the bed at all depths.) 

The result of the analysis as it applies to real glaciers may therefore be expressed 
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as follows. We neglect the influence of the valley sides and postulate that no rapid 
changes take place in the longitudinal direction. The approximate stress distribution 
is then as given in (19)with r given by (24).The approximate velocity distribution is 

v = T r (y-h) fu(a, -a,). 

It is natural to ask what in fact determines r, the longitudinal strain rate, regarded 
up to now as a parameter to be found empirically. In  the perfectly plastic model 
the problem can be solved explicitly (see (I))because the solution naturally termi- 
nates when T,, reaches the value of the critical shear stress. If we postulate that the 
depth of the glacier is equal to this critical depth everywhere we have immediately? 
h = h,/sin a,, where h, = Alpg, at  all points down the glacier. The thickness of the 
glacier must therefore adjust itself to the slope. If there is no addition or subtraction 
of material at  the upper surface, the thickness change is accomplished by a longi- 
tudinal strain rate which is readily shown to be (+/hR) cot a,, where + is the total 
flow rate (volume, per unit thickness in the x direction, flowing in unit time through 
a cross-section perpendicular to Ox), and R is the radius of curvature of the surface. 
R is positive when the surface is convex and negative when concave. If, on the 
other hand, the slope is uniform but ice is being added or subtracted at the upper 
surface by snowfall or ablation at the rate d$/dx (measured as the thickness of ice 
per unit time), a longitudinal strain rate of h-ld+/dx is necessary to maintain the 
critical thickness. In  general 

It must be emphasized that equation (36) is founded on the condition that I-, is 
constant on the bed of the glacier. When n is not infinite there is nothing in the 
analysis which demands such a condition. Nevertheless, as mentioned below, T,, 

does appear to be approximately constant on the bed of a glacier. It is therefore 
plausible that equation (36) gives some approximation to the value of r in real 
glaciers. 

It is possible to understand how r is determined in nature by looking at the forces 
involved rather than at the velocities, and using an argument due to Orowan (1949). 
In  our solution the downhill component of the weight of the glacier, pghsina,, is 
balanced essentially by the uphill tangential force exerted by the bed on the ice. 

But there must be places where the balance is slightly disturbed; and S(r,),,,dx, 

taken from the head of the glacier to a given x, will not then exactly balance 

t In  (I)this formula was derived explicitly only for a glacier, the formula for an ice-sheet 
being somewhat different. However, the difference is removed if in (1)the origin is shifted 
to the upper surface of the block and the x axis is taken parallel to the upper surface. The 
stress and velocity solutions are then essentially unaltered, except that a and R refer to the 
upper surface rather than to the bed. On the other hand, in equation (10) of (I)the first 
term in dhldx does not appear, and so the condition h =h,/sin cc applies not only to the 
glacier but also to the ice-sheet. The two cases are thus really one and the same. 
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SjSghsina,dx. The difference between the integrals will result in an excess longi- 

tudinal component of stress v,, in addition to the hydrostatic component pgVy 
which is always present. It is this excess component that causes the longitudinal 
strain rate. 

Boundary conditions on the lower surface 

As mentioned above, the present approach does not give any criterion for fixing 
the thickness of the glacier, except when n+co. The problem in its simplest form is 
illustrated in figure 5. In a steady state the total flow rate is determined by the rate 
of accumulation and ablation integrated over all parts of the glacier above the place 
we are considering. At this place let us assume, for simplicity, that the flow is 
laminar and that there is no accumulation or ablation. Then the slope of the valley 
determines the shape of the u:y curve. The thickness, however, as the figure shows, 
is still undetermined; for a given q5 could be achieved either by a thin glacier slipping 
fast on its bed, or by a thicker glacier in which there was more differential motion 
within the ice. 

FIGURE5. A given discharge 4 can be achieved (a )by a thin glacier slipping fast on its bed, 
or ( b )by a thicker glacier of equal slope in which there is more differential motion within 
the ice. Shaded areas are equal. 

There is no reason to suppose that the condition u = 0 at the lower surface, which 
would be usual for a Newtonian liquid, should hold for ice sliding over rock; and, in 
fact, direct observation (McCall1952) shows that sliding does occur and may some- 
times be the major part of the total motion. It is more reasonable to think that, with 
given thermal conditions and a bed of given roughness or relief, there is a functional 
relationship between T,, and u on the bed. In that case a change of u with x on the 
bed, which is almost inevitable, would imply a change of r,, with x-and this would 
vitiate the soIutions we have found for extending and compressive flow. But the 
difficulty is perhaps not serious, for the truth may be that r,, on the bed is indeed 
governed partly by the velocity of sliding, but, owing to the high value of n, 
a change in u on the bed only causes a relatively small change in the shear stress. In 
support of this view, when the values of r,, on the beds of glaciers and ice-sheets are 
calculated from the measured thicknesses and surface slopes, they show remarkably 
little variation from point to point of the same glacier, and even from one glacier to 
another (Nye 195za, b, c; Orvig 1953; Robin 1953; Bauer 1955; Ward 1955; Bull 

1957). 
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In extending flow figure 2 shows that there is an upper layer of the glacier where 
a, is tensile. Explicitly, o;, is tensile to a depth y, where 

pgy = 2 ~ ( 3sin2a, + I)-< (37) 

and r is given by (24). In  most cases the value of r will be close to its value on the 
surface, that is, r will be given sufficiently accurately by f ( r )= r. Crevasses will 
occur within the tensile layer when the tension exceeds the fracture strength. The 
effect of atmospheric pressure is to add a (negative) constant on to a, and a,, but it 
will not alter the depth of the crevasses (Nye 1955). 

In a well-known experiment Gerrard et al. (1952) have measured directly the 
variation of longitudinal velocity u with depth y in a glacier. Working on the 
Jungfraufirn, in the Bernese Oberland, they melted a vertical hole, 137 m long, 
from the glacier surface to the rock bed. The hole was lined with a 3 in. steel tube 
which became tilted and bent according to the variation of u with y. The inclination 
of the tube at different depths was measured at the beginning of the experiment in 
August 1948, and again in October 1949 and September 1950. The experiment thus 
gives directly the rate of change of inclination of the pipe as a function of depth, and 
the result was straightforwardly interpreted as giving the rate of shear strain &lay, 
which will be denoted by j,as a function of y. 

The variation of density with depth was not measured at the boring site but had 
been measured down to a depth of 28m in 1938 in the wall of a crevasse which 
happened to be at  the same altitude as the boring site and on the same glacier. By 
use of these data a density curve for the whole depth of the glacier was inferred, and 
then, using the measured surface slope, pg, y was calculated as a function of y. The 
result of the experiment was thus a relation between jand pg, y. I t  was found that 
y cc (pg, y)%, where n -1.5; whereas if the glacier were deforming by laminar flow, as 
was tentatively assumed, Glen's experiments would lead one to expect a value of 
n of about 3 or 4. 

It seemed possible that the discrepancy was due to the erroneous assumption of 
laminar flow (Nye 1953; Perutz 1954; Glen 1955) and this can now be checked. 
Ing. P. Kasser has measured the spatial variation of the surface velocity at  the 
borehole site.? The movement of two stakes set in the surface along a line of flow 
was measured from 2 September 1949 to 5 September 1950. In this period (368 days) 
the distance between the stakes increased from 27.3 to 31.4m. The tensile strain 
rate is then r = (l/t) ln (1,/1,) = 0.14 yr-l. The positive sign was to be expected from 
the presence of a few transverse crevasses in the region of the boring site. Tilting of 
the stakes may cause an error in the measured extension, but Kasser reports that it 
will not exceed 0.5 m. Thus for the second year of the pipe observations we may take 

r = 0.14 + 0.02 yr-I (maximum error). 

t I am much indebted to Ing. Kasser for making the results of his work available to me. 
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The corresponding values of r for later periods, measured at the same absolute 
position (and so necessarily on different stakes), are as follows: 

dates 8. ix. 52 8. ix. 53 22 vi. 54 25 ix. 54 13. xii. 54 24. i. 55 31. iii. 55 
L y - J  L - , , - - . - . J L 7 2 L 7 J  L+L-,-....J 

period (days) 365 288 95 79 42 66 
r yr-l 0.12 0.16 0.25(?) 0.12(?) 0.17 0-18 

(The maximum error in r due to tilting of the stakes is + 0.01 in each case.) 
With r known, and with jknown as a function of pg, y from the pipe experiment, 

it is possible, in principle, to deduce a flow law from the experiment by using the 
equations 

26
6 =  J(r2++y2), T = --pg,y7,

Y 

which are readily derived from (23) and (24) (putting aulay = y). However, in the 
upper parts of the pipe jis small compared with r and difficult to measure. Hence, 
a large proportional error in j in the upper parts of the pipe will give an equally 
large proportional error in T deduced from (38). This makes a flow law deduced from 
the upper parts of the pipe rather unreliable. We therefore reverse the procedure 
as follows. 

Taking r = 0.14yr-l, and assuming the relation between 6 and T given by Glen's 
laboratory experiments, we deduce the dependence of jon pg, y from the equations 

Except for a surface layer of 15 m thickness which is penetrated by the winter cold 
wave, the whole of the Jungfraufirn at  the altitude concerned is at  the pressure 
melting-point (Hughes & Seligman 1939). Glen (1955) gives two flow laws for 
-0.02"C, one referring to the quasi-viscous creep rate and the other to the minimum 
observed creep rate. We select the former, both on the general grounds that Glen 
discusses and because this curve shows the better agreement with the results from 
the contraction of glacier tunnels. Glen's equation 

for uniaxial compression becomes, in terms of 6 and T (p. 486 of Nye 195 3): 

(strain rates in yr-l, stresses in bars). We then find the theoretical curve of jagainst 
pg,y shown in figure 6 as TI. 

Before comparing the theoretical curve with the result of the pipe experiment a 
complication in the interpretation of the experimental results must be menkioned. 
If the pipe were initially normal to the surface it would begin to tilt in proportion 
to the shear strain rate j.But, once tilted, the longitudinal extension rate r would 
produce a f~~r the r  tilt on its own account. The strain rate normal to the surface, 
assumed equal to -r (compressive), has the same effect. This means that the change 
of inclination of the pipe can no longer be straightforwardly interpreted as due to 
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shear strain alone. For a given depth, if 0 is the angle of inclination of the pipe to 
the surface normal (tan0 = dxldy), we have 

Taking jto be constant and integrating we find 

2r 
Y = e-;j---l-

(tan 0, -exp (2rtl) tan 0,), 

where 0 = 0, when t = 0, and B = 0, when t = t,. 

FIGURE6. Rate of shew strain j as a function of shear stress Fg,y in the Jungfraufirn. 
X,,presenk theory (a,= 4.0°, r = 0.14 yr-1); X,, theory ignoring the longitudinal strain 
rate (r = 0). El, experimental (15 August 1948 to 10 October 1949); E,, experimental 
(10 October 1949 to 8 September 1950); E,,best experimental curve (15 Augrmt 1948 
to 8 September 1950). 

The inclinations 4measuredin the experiment were to the vertical, and 4and 0 are 
defined with opposite senses, so that 0 = -(4-al).As explained below a, is 
taken as 4.0'. Born the measured values of 4, I have calculated 0, and hence 7 by 
equation (40). This has been done for various depths and for the periods 1948-49 
(curve El), 1949-50 (curve E,), and 1948-50 (curve E,). The values of pg,y used in 
plotting these experimental curves are smaller by a factor of 0.86 than the shear 
stresses calculated by Gerrard et al. because I have used a different value for the 
surface slope a,. Gerrard et al.took a,= 4.6". This was calculated (private com- 
munication) from contour lines shown on a 1:25000 map of the area, apparently 
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made in 1939 or earlier, and represents the average slope over a distance of 500m. 
Kasser has measured the surface slope over a distance of 150m, which is more 
nearly equal to the length of the pipe, by survey of the stakes referred to above, 
with the following results: 

I have adopted the value 4.0°, which is the mean for the period 1948-50. The 
effect of taking a different value for the slope would be to change the vertical scale 
for the experimental curves in figure 6; a lower slope would raise them towards 
curve TI. 

An unexpected result of this analysis is that the experimental curves for the 
various periods no longer agree well with one another, whereas when interpreted by 
Gerrard et al. on the simple shearing hypothesis they agreed very well. The most 
reliable measurements are those made in 1948 and 1950; in 1948 the inclinometer 
was not well controlled in azimuth, but since the tube was nearly vertical this is not 
a serious defect; in 1950 the inclinometer worked well and gave reproducible results. 
In  1.949, on the other hand, the inclinometer was not completelyreliable, and below 
100 m the values may be in error by as much as 5". It seems therefore that E3should 
be regarded as the best experimental curve. 

The maximum difference between the shear rates given by curves E, and Tl is 
0.048yr-l, or 2.8" per year. It is difficult to estimate the maximum error of E3 in 
shear rate, but it is almost certainly less than this, and probably about 0.6" per year. 
Thus some discrepancy remains. 

The most serious weakness of the present theory is that it ignores the drag of the 
valley sides, and so will overestimate j. This might account in full for the gap 
between TI and E,. Other possible sources of error are as follows: 

(i) Plane strain has been assumed. There may well be a significant lateral strain 
rate, but its magnitude is unknown. This would not only affect the curve TI, but, 
if compressive, as seems likely, would reduce the spread between the three experi- 
mental curves. If the magnitude of the lateral strain rate were known, there would 
be no difficulty in modifying the theory to allow for it. 

(ii) Variations of strain rate in the x direction are not included in the theory, 
although they may be significant. 

(iii) Errors in the measurement of the surface slope and of r. 
(iv) Glen's flow law for ice has been used, whereas the upper layers of the glacier 

consist of firn. (A change of the constant in the flow law would give a change in 
vertical scale for curve TI.) 

(v) Kasser's surface measurements are assumed to be representative of the under- 
lying layers of ice; effects due to creep of the firn have been ignored. 

(vi)The ice is supposed not to move past the pipe, although it must slip along it. 
We must remember that a given element of ice changes its depth during the experi- 
ment, both because of the aocumulation of new snow on the surface and because of 
the strain in the y direction. The shear stress acting on a given element of ice 
therefore changes. However, what is important from our point of view is not the 
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change of depth of an element of ice, but the change of depth of an element of the 
pipe (owing to slipping along the length of the pipe these are not the same). The 
latter change arises both from the accumulation of new snow on the surface and 
from the bending of the pipe. The error in the calculated shew stress from this cause 
may be about 0.03 bar (corresponding to 5 m of ice). 

(vii) The weight of the winter snow produces an additional shear stress during 
the winter which we have neglected. 

(viii)An error in the assumed density distribution would likewise lead to an error 
in the calculated shear stress. 

The difference between the present theoretical result and the result given by the 
earlier theory which ignored the longitudinal strain rate is seen by comparing curves 
Tl and T2. T2 is calculated for r = 0 and gives values of j considerably smaller than 
those observed, particularly at  small depths. The effect of including r is to increase 
the theoretical j at all depths. At a depth of 50 m the effect of ignoring r is to under- 
estimate j by a factor of 50, while on the present theory j at this depth is over- 
estimated by a factor of 1-33. 

As the depth increases the effect of r becomes progressively less important (curve 
T2approaches Tl as y -t a),but in the Jungfraufirn r still makes an important con- 
tribution even in the deepest layers. In the upper layers, on the other hand, the 
longitudinal strain rate is the major part of the total strain rate. This has the 
interesting effect of making the curve Tl nearly linear at  the top, for it is readily 
proved that in the uppermost layers, where r j ,  j is proportional to pgz y with an 
effective viscosity of 2r / r * ,  where r =f (r*).In other words, if the major part r of 
the strain in these layers is ignored, the minor part j behaves in an apparently 
viscous way, but with the coefficient of viscosity determined by r .  To remove any 
misunderstanding let it be said at  once that this fact gives no support at  all to the 
coilstant viscosity theory of glacier flow. 

Another interesting feature of the theoretical solution is the remarkable constancy 
of r ;  it varies from 0.99 bar at  the surface to 1.08 bars at  the bed. This again is an 
effect arising from the dominant role of the longitudinal extension rate. It follows 
that in this particular place in the Jungfraufirn the approximation of perfect 
plasticity would be a good one. The depth of the Jungfraufirn is such that the lower 
parts of the perfectly plastic solution, where the strain rates are very large, arid 
where the solution therefore breaks down for a real material, are never reached. The 
measured depth in fact corresponds to 0-72 of the critical depth of the perfectly 
plastic solution. 



133 Stress and velocity in glaciers and ice-sheets 

REFERENCES 

Ba~xer,A. 1955 Actmlit6s Sci. Industr. no. 1225. Expeditions Polaires Franpaises. VI. Le 
Glacier de L'Eqe, pp. 86-8. 

Bull, C. 1957 Submitted to  J. Claciol. 
Gerrard, J .  A. F., Penitz, M. F. & Roch, A. 1952 Proc. Roy. Soc. A, 213, 546. 
Glen, J. W. 1955 Proc. Roy. Soc. A, 228, 519. 

Hill, R. 1950 The mathematical theory of plasticity. Oxford: Clarendon Press. 

Hughes, T. P. & Seligman, G. 1939 Mon. Not. R. Astr. Soc. Geophys. Suppl .  4, 616. 

McCall, J. G. 1952 J. Glaciol. 2, 122. 

NAdai, A. 1931 Plasticity, pp. 221-226. New York: McGraw-Hill. 
Nye, J. F. 1951 Proc. Roy. Soc. A, 207, 554. 
Nye, J. F. I952U J. Glaciol. 2, 82. 
Nye, J. F. 1952b J .  Glaciol. 2, 103. 
Nye, J. F. 1 9 5 2 ~Nature, Lond., 169, 529. 
Nye, J. F. 1953 Proc. Roy. Soc. A, 219, 477. 
Nye, J. F. 1955 J. Glaciol. 2, 512. 
Orowan, E. 1949 J. Glaciol. 1, 231. 
Orvig, 8. 1953 J. Glaciol. 2, 242. 
Perutz, M. F. 1954 Proc. Roy. Instn. G.B. 35, 571. 
Prandtl, L. 1923 2. angew. Math. Meclz. 3, 401. 
Robin, G. de Q. 1953 J. Glaciol. 2, 205. 
Truesdell, C. 1950 J.Math. pures appl. 29, 215. 
Truesdell, C. 1952 J.Rat. Mech. Anal.  1, 225. 
Ward, W. H. 1955 J. Glaciol. 2, 592. 


