
OpenPolarServer An open source, field deployable, spatial data infrastructure.

 Kyle W. Purdon, Trey Stafford, Sam Buchanan, Haiji Wang, John Paden, Xingong Li

Deployable Web Server
A requirement of the OPS system is that it be portable for easy deployment in field
applications where network access is limited or non-existent. To fulfill this requirement the
system is packaged completely on a CentOS (Linux) virtual machine and deployed using a
provisioning tool called Vagrant. To install the complete system a user must install Oracle
VirtualBox and Vagrant, then download the OPS package. A simple command, [vagrant up]
will automatically create and install the system, including all software and configuration. The
system can be temporarily suspended and resumed using [vagrant suspend] and [vagrant
resume] at any time. Vagrant also allows for a complete wipe of the system using [vagrant
destroy]. The entire installation process currently takes around 15 minutes to complete.
Once installed the user can interface with the system using MATLAB (installed separately) or
the web interface. The vagrant process (left) and system structure (right) are diagramed
below.

Database Management System
Previous to the OPS system most datasets were stored on the file system in various container
formats such as HDF, NetCDF, or MAT. The limit of these file formats is that to make any
inferences about the information they contain you must first load them, and then run some
process to understand them. A database management system (DBMS) allows any structured
dataset to be stored in parts (tables) and related via keys. Using the structured query
language (SQL) this data can be instantly queried, making simple analysis effortless. The
complication of using a DBMS is the initial set-up time and relational design. The ER (Entity
Relationship) diagram for CReSIS radar data is shown below. This diagram outlines where
data is stored in the database and how it is related to other data via keys. The database
stores paths (latitude, longitude, time), layers (surface, bottom, internal), and layer data as
well as reference information and data used for error analysis.

Database-Access API
Just as one must access the contents of a file to analyze the underlying values a DBMS must
have an API (Application Programming Interface) to access and analyze its contents
effectively. The OPS system uses the Django ORM (Object-relational mapper) to insert,
retrieve, and query stored data. Django is built in Python and provides efficient and
convenient shortcuts for interfacing with the database from various web clients. The
database structure is defined in python using classes to map tables and class variables to
define fields within the tables. The locations and radars classes for the CReSIS radar depth
sounder are shown below (bottom). Django ‘views’ are defined as functions in python. These
views are mapped to URL’s which can be accessed from MATLAB or the web. A typical
request cycle from MATLAB is outlined in the diagram below (top).

Map Server
A crucial piece of any spatial data infrastructure is a map server. The OPS system uses
GeoServer in an Apache Tomcat container to serve WMS (Web Map Service) and WFS
(Web Feature Service) data to the various clients. Typically GeoTIFF data (satellite
imagery, velocity rasters, and bedrock grids) are served as WMS layers. Data collection
tracks (flightlines) are served as either a WMS or a WFS. These services are queryable
and therefore can produce dynamically generated maps including real-time updated
data from the DBMS. The images below show a rendered JPEG (left) combining GeoTIFF
imagery with line paths from the PostgreSQL database, and an OpenLayers application
(right) showing information stored in the database for a selected line path with
additional JavaScript tools.

MATLAB Data Picker
The CReSIS MATLAB data picker was completely overhauled in order to be compatible with
the new OPS system. As well as a complete visual overhaul of the GUI the functional
background was completely revamped as well. While echograms are currently still loaded
from the local file system the layer data, and map data are retrieved from the OPS server.
As layers are tracked the data is saved to the DBMS by the user and becomes immediately
available to the web client and all other picker clients connected to the system. The picker
allows for a theoretically infinite number of layers to be tracked by implementing a layer
manager. In the new system not only surface and bottom can be tracked, but any layer
identifiable in the image. Below is the new CReSIS layer picker. Shown is the preference
window (top left) which controls the source data and map selection, the map window
(bottom left) which displays the available data and allows for text search or geographic
selection of data segments, and the echogram “pick” window (right) which is the actual
layer tracking interface.

JavaScript Web Client
The web client is the public interface to all data stored in the DBMS. Currently the primary
purpose of the website is distribution of data; however, analysis capabilities will be
implemented in the future exposing the power of SQL and PostGIS. A JavaScript echogram
image browser is also in development. Currently the client is built using OpenLayers, but
will be updated with more features using the GeoEXT JavaScript library on top of the
OpenLayers interface. Current features include geographically based data retrieval, data
availability visualization, and real-time data updates since the web client is tied directly to
the DBMS. CReSIS will also host a primary copy of the web client that will allow access to
all of the publicly available data via the convenient JavaScript interface. Below is an image
of the first version of the web client.

What is the
OpenPolarServer?

The OpenPolarServer (OPS) system
is a packaged web server (Apache)
hosting a database management

system (PostgreSQL + PostGIS), map
server (GeoServer), and a database-

access API (Django) for storing,
retrieving, creating, and querying
multi-layer polar remote sensing

data. The system is accessed via the
MATLAB data picker or the

JavaScript (GeoEXT + OpenLayers)
web interface. The OPS is designed
to be easily deployed in the field.

Coming Soon!
ops.cresis.ku.edu

PostGIS (Geospatial DBMS)
PostgreSQL alone cannot handle geospatial data in a GIS friendly format. However with the
PostGIS spatial database extender geographic objects and methods are added to the
functionality of the database. Objects like lines, points, and polygons can be stored in
geometry types that include XY (2D), XYZ (3D), and XYZM (4D) objects. Having objects with
understood spatial coordinates also allows for a suite of GIS functionality, which is included
with PostGIS. With this extension queries can now ask questions like “what is the difference
in values at the crossing of these two lines” (crossover analysis) and even “give me all of the
available data inside of this boundary” (geographic search). PostGIS includes both
geographic and projected coordinate system information using EPSG codes. In the OPS data
is stored in EPSG 4326 (WGS 1984), then transformed into EPSG 3013/3413 (Polar
Stereographic South/North). PostGIS includes functions for forward and backward
projection.

http://geoserver.org/
http://www.geoext.org/

http://tomcat.apache.org/
http://www.centos.org/
http://httpd.apache.org/

http://www.postgresql.org/
http://postgis.net/

http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wfs

OpenPolarServer logo by Aaron Taveras
https://www.djangoproject.com/

http://www.vagrantup.com/
https://www.virtualbox.org/

http://openlayers.org/

References & Additional Information

KU Geography KU Geography KU Engineering KU Engineering KU, CReSIS KU Geography

