

OpenPolarServer (OPS) - An Open Source Spatial Data Infrastructure for the Cryosphere

Community

By

Kyle W. Purdon

Submitted to the graduate degree program in Geography and the Graduate Faculty of the

University of Kansas in partial fulfillment of the requirements for the degree of Master of

Science.

Chairperson Dr. Xingong Li

Dr. Terry Slocum

Dr. David Braaten

Date Defended: April 17, 2014

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 1559520
Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 1559520

ii

The Thesis Committee for Kyle W. Purdon –

certifies that this is the approved version of the following thesis:

OpenPolarServer (OPS) - An Open Source Spatial Data Infrastructure for the Cryosphere

Community

Chairperson Dr. Xingong Li

Date approved: April 17, 2014

iii

Abstract

The Center for Remote Sensing of Ice Sheets (CReSIS) at The University of Kansas has

collected approximately 700 TB of radar depth sounding data over the Arctic and Antarctic ice

sheets since 1993 in an effort to map the thickness of the ice sheets and ultimately understand

the impacts of climate change and sea level rise. In addition to data collection, the storage,

management, and public distribution of the dataset are also one of the primary roles of CReSIS.

The OpenPolarServer (OPS) project developed a free and open source spatial data

infrastructure (SDI) to store, manage, analyze, and distribute the data collected by CReSIS in

an effort to replace its current data storage and distribution approach. The OPS SDI includes a

spatial database management system (DBMS), map and web server, JavaScript geoportal, and

application programming interface (API) for the inclusion of data created by the cryosphere

community. Open source software including GeoServer, PostgreSQL, PostGIS, OpenLayers,

ExtJS, GeoEXT and others are used to build a system that modernizes the CReSIS SDI for the

entire cryosphere community and creates a flexible platform for future development.

iv

Acknowledgements

I acknowledge the use of data and/or data products from CReSIS generated with

support from NSF grant ANT-0424589 and NASA grant NNX10AT68G.

v

Table of Contents

1 Introduction ..1

2 Data ..2

2.1 CReSIS Data ..2

2.2 Community Data ..4

2.3 Reference Data ...6

3 Pre-OPS Spatial Data Infrastructure ...7

3.1 Data Storage Formats...7

3.2 Data Distribution Methods ..10

3.3 Data Access Methods ..11

4 Problems and Objectives ..13

4.1 Data Distribution Issues ...13

4.2 Data Storage Issues ..14

4.3 Project Objectives ..17

5 OpenPolarServer System Structure and Components ...18

5.1 Spatial Data Infrastructures ...18

5.2 OpenPolarServer System Structure ..19

6 OpenPolarServer SDI Implementation ...25

6.1 Free and Open Source Software (FOSS) ...26

vi

6.2 CentOS Linux ..26

6.3 PostgreSQL and PostGIS ...26

6.4 Apache HTTP and Apache Tomcat ...30

6.5 Geoserver ...32

6.6 Django ...42

6.7 Clients ..60

6.8 Vagrant and VirtualBox ...83

7 Usability Analysis ...87

8 Conclusions ..89

9 References ..91

10 Appendices ...95

10.1 Source Code ...95

10.2 Web Application Links ..95

1

1 Introduction

“The Center for Remote Sensing of Ice Sheets (CReSIS) is a Science and Technology

Center established by the National Science Foundation (NSF) in 2005, with the mission of

developing new technologies and computer models to measure and predict the response of sea

level change to the mass balance of ice sheets in Greenland and Antarctica. The NSF’s

Science and Technology Center (STC) program combines the efforts of scientists and

engineers to respond to problems of global significance, supporting the intense, sustained,

collaborative work that is required to achieve progress in these areas. CReSIS provides

students and faculty with opportunities to pursue exciting research in a variety of disciplines;

to collaborate with world- class scientists and engineers in the US and abroad; and to make

meaningful contributions to the ongoing, urgent work of addressing the impact of climate

change [1].” Since 1993 CReSIS, or precursor groups to CReSIS, have collected over 700 TB

of data in the Arctic and Antarctic using a suite of radars developed at the center [2]. The

distribution of this dataset is one of the core duties of CReSIS. As a distributor of such an

important dataset to the cryosphere community, and to the broader field of climate research,

simplifying the process of data retrieval for data users and streamlining the process of data

creation for the scientists and staff at CReSIS are two important and unresolved goals. In this

work I present a new system, OpenPolarServer (OPS), which presents a resolution to these

goals.

The primary goal of this work is to develop a free and open source SDI capable of

storing, managing, creating, analyzing, and distributing the dataset collected by CReSIS in a

way that provides ideal conditions for data users and primary producers of polar remote

sensing data. In addition to the primary goal, a secondary goal is to design the proposed OPS in

2

a way that allows the entire cryosphere community to provide new datasets for inclusion in the

system. To achieve the secondary goal special attention was paid to generalize all of the OPS

components. In the following sections I will introduce the current SDI at CReSIS and two

projects that predate this work. I will then review the literature of SDI, geoportals, cryosphere

data, and free and open source software. Finally I will present the OPS in its entirety.

2 Data

2.1 CReSIS Data

CReSIS is the primary data contributor to the OPS [3]. Since 1993 CReSIS, or

precursor groups to CReSIS, have collected over 700 TB of data in the Arctic and Antarctic

using a suite of radars developed by the center [2]. Most of this data is in the form of radar

echograms showing cross-sections of the Arctic and Antarctic ice sheets. These radar

echograms are designated as Level 1B (L1B) data defined by NASA as “data that have been

processed to sensor units [4].” Fig. 1 shows a radar echogram with major features labeled and

a map indicating the location of the radar echogram. The radar echogram offers a raw data

product from which usable information must be extracted. For CReSIS the ice surface layer

and ice bottom layer are the target information for extraction. The extraction process is

carried out using the Data Picker, a custom MATLAB software developed at CReSIS. It is a

tool which allows for manual digitization (with some automation) of the ice surface and ice

bottom layers resulting in a point based dataset with the primary attribute of layer elevation.

The digitization process results in a

dataset of points, each with a set of attributes that will be discussed later. These points are

designated as Level 2 (L2) data defined by NASA as “derived geophysical variables at the

same resolution and location as Level 1 source data [4].” Fig. 2 shows the radar echogram in

3

Fig. 1 with the digitized ice surface and bottom layers and an inset that shows the digitized

point objects. This digitized ice surface and ice bottom is the primary data product stored in

the OPS database.

Fig. 1: A CReSIS L1B echogram (left) with its location (green line) identified via a

map of Greenland (right). Major features are labeled on the radar echogram.

4

Fig. 2: A CReSIS L1B radar echogram (Fig. 1) with digitized (picker) layers (blue)

2.2 Community Data

In addition to the primary data product, described in section 2.1, there are additional

layers that can be extracted from the radar echograms by manual and automated digitization

methods. There is a community of cryosphere scientists that are developing methods for

digitizing the internal ice layers present in the CReSIS L1B dataset. As stated in the

introduction it is a primary goal of the OPS to support not only the CReSIS dataset but also a

broader selection of polar remote sensing data. The digitized point data representing internal

ice layers is one of these non-CReSIS generated datasets. A current venture is underway at

The University of Texas to automatically extract the entire radio stratigraphy (internal ice

5

layers) of the complete CReSIS L1B dataset [5]. Fig. 3 shows preliminary results of the

automated radio stratigraphy derived from an L1B radar echogram from the 2011 Greenland

P3 CReSIS dataset.

 Fig. 3: Automatically digitized internal ice layers (blue) and CReSIS digitized ice surface and

ice bottom (red).

In addition to non-CReSIS data generated from the L1B radar echograms, another

source of data for the OPS is two LiDAR instruments, the NASA Airborne Topographic

Mapper (ATM) [6] and Land, Vegetation, and Ice Sensor (LVIS) [7], which collect data on the

same aircraft as CReSIS radars during various field data collection campaigns. These lidar

sensors provide a high precision measurement of ice surface elevation that can be stored in the

OPS database and displayed on CReSIS radar echograms. Fig. 4 shows a CReSIS radar

echogram with a manually digitized ice surface layer and the ice surface measurement from the

6

ATM lidar as a secondary layer. These examples of non-CReSIS layers are just a sample of the

potential community inputs to the OPS. There are other research groups collecting related

datasets that could benefit from the features the OPS SDI provides. It is the author’s hope that

with the OPS implementation described in this thesis the community can finally come together

and grow within a single framework.

2.3 Reference Data

In addition to the datasets discussed in sections 2.1, and 2.2, the OPS is reliant on a

collection of reference data, primarily in the form of raster imagery and vector geographic

boundaries. Fig. 5 shows a few examples of the datasets that serve as reference data for the

OPS. In general the reference datasets include satellite imagery [8][9], raster velocity data

[10], bedrock digital elevation models [11][12], and vector coastline data [13]. A complete

listing of reference datasets is included in the OPS software.

Fig. 4: CReSIS digitized ice surface (blue) and ATM collected LiDAR ice surface data (red).

7

Fig. 5: A sample of reference data included with the OPS. Shown from left to right is

Natural Earth Imagery, Bamber V3 Bedrock Elevation, Landsat-7 Imagery, and Joughin

Ice Surface Velocity.

3 Pre-OPS Spatial Data Infrastructure

This chapter provides a review of data distribution at CReSIS prior to the integration

of the OPS. I first introduce the data storage formats for each of the primary CReSIS datasets

(L1B radio echograms, L2 ice surface and bottom layers), as well as the formats for the

CReSIS derived internal ice layers. Then, I present the chosen methods of distribution for the

primary CReSIS datasets and finally discuss data access methods, including two projects that

predate the creation of the OPS.

3.1 Data Storage Formats

The primary data storage format for CReSIS L1B and L2 datasets is the MATLAB

binary file format (.mat) commonly referred to as a MAT file [14]. The MAT file format is a

8

proprietary binary file format used by the high-level scripting language and interactive

environment for numerical computation, MATLAB. CReSIS chose this format as its primary

data storage container because all of the data processing, digitization (picking), and analysis is

performed using MATLAB. CReSIS designates two primary types of MAT files called data

files and layerData files. The data files store the L1B radar echogram values and the layerData

files store the L2 ice surface and bottom values. CReSIS data is divided by day and then each

day is divided into segments. Each segment is further divided into frames. There is a single

layerData file per frame. There is a minimum of one data file per frame but there can be more

if additional radar echogram processing types are included. In addition to the two primary files

(data, and layerData) CReSIS also stores additional information about the data collection path

geometries in the MAT file format. The data collection paths or tracks are referred to as

flightlines and are stored in MAT files called gps, records, and frames files. There is a single

GPS file per day, a single records file and a single frames file per segment. GPS files store time

and position data from the onboard GPS instruments. Records files store processed time and

position data. Frames files store the integer indices of data in records files marking the

subdivision of segments into frames. Fig. 6 shows a graphical representation of the gps,

records, frames, data, and layerData files for a single segment of data.

While the MAT file format is convenient for users of MATLAB there are many other

common data formats that CReSIS must provide to end users including (but not limited too)

comma-separated values (CSV), keyhole markup language (KML), and joint photographic

experts group (JPEG). To create these formats CReSIS has created a collection of tools called

the CReSIS toolbox. This toolbox contains many functions and scripts written in MATLAB

that convert from the MAT file format to outputs such as CSV, KML, JPEG and more. Once

9

this collection of output files is created it is made available to users through two primary

services: the CReSIS FTP [15] and the National Snow and Ice Data Center (NSIDC) data

archive [16].

Fig. 6: An example set of CReSIS data for a single data collection segment. 3 files (1 GPS,

1 RECORDS, 1 FRAMES) store the flight path data, 3 files (1 layerData per frame) store

the digitized layers, and a minimum of 3 (1 per frame per processing type) store radar

echograms.

10

3.2 Data Distribution Methods

File Transfer Protocol (FTP) is one of the standard methods for transferring files over

the internet from one computer to another. CReSIS implements a standard FTP server which

exposes an organized directory of files to the web. This allows users to connect to and transfer

any files from the FTP server to their own computer. This is a simple and fast method of data

transfer. The CReSIS FTP was the primary method of data distribution prior to the integration

of the OPS. All of the files discussed in the previous section (gps, records, frames, data, and

layerData) as well as the output file formats (CSV, KML, JPEG …) are served through the

CReSIS FTP. Fig. 7 shows a standard season directory on the CReSIS FTP. The NSIDC data

archive is a hub for the archival of all cryosphere data. In the background, the NSIDC website

is essentially just an FTP. However NSIDC implements a data portal with a more organized

approach of navigating and selecting datasets for download. The NSIDC Operation Ice Bridge

(OIB) data portal is discussed in section 3.3.

Fig. 7: A standard season directory on the CReSIS FTP. The directories shown contain all of

the various file types (MAT, CSV, KML ...) and are further organized in subdirectories not

shown in this image.

11

3.3 Data Access Methods

In addition to simply browsing the CReSIS or NSIC FTP for data there are additional

tools that allow users to download the data. Of particular interest are three data access

methods: Geographic Search GUI, PolarGrid, and the NSIDC Operation Ice Bridge (OIB)

Data Portal. These three tools represent the most prominent data access methods available to

the cryosphere community for retrieving CReSIS data. Fig. 8 shows a preview of the three

tools.

This NSIDC OIB Data Portal [17] exposes the NSIC FTP contents to a map interface

and allows users to visualize what data is available on the NSIDC FTP. It offers some basic

filtering capabilities such as the date of collection and the data source but does not offer data

subsetting. The end product of this tool is still one or many files (in various formats) retrieved

from an FTP.

The PolarGrid Cloud GIS [18] was developed as part of the broader PolarGrid project

at Indiana University [19]. This service was intended to mature into a fully functional

geoportal which has not yet occurred. As of the time of this thesis there is no active support or

development on the PolarGrid Cloud GIS and it can be considered EOL (end of life). The

PolarGrid Cloud GIS service offered similar functionality to the NSIDC OIB Data Portal but

was designed to interact with the CReSIS FTP. The PolarGrid Cloud GIS project was handed

over to CReSIS and though most of the work was scrapped the idea became the OPS.

Geographic Search and its successor Geographic Search GUI are MATLAB-based

tools and offer an application programming interface (API) to the CReSIS FTP. Geographic

Search offeres a simple scripting interface to the FTP allowing a user to manually enter a

boundary of coordinates, a list of datasets, and an output format to retrieve a subset of data

12

from the FTP. The tools work by downloading all of the required data from the FTP and

using MATLAB to subset and output the dataset. Geographic Search GUI [20] was developed

as a enhancement to the Geographic Search tool. It added an interactive command line input,

a larger range of filtering and output options, and a graphical user interface (GUI) to its

predecessor.

Fig. 8: Previews of various tools that give users access to CReSIS data. The PolarGrid

Cloud GIS (A), MATLAB Geographic Search GUI (B), and the NSDIC OIB Data Portal

(C) are shown.

13

4 Problems and Objectives

4.1 Data Distribution Issues

The primary method of data distribution for CReSIS is currently the CRESIS FTP website

discussed in section 3.3. Let us imagine the following common data use task: Using the

CReSIS FTP site download all ice thickness data in some specified region. With this task in

mind the user might follow the

KML Search Method:

1. Download and load all of the posted KML files from the ftp site.

2. Use the KML metadata to determine the segment IDs for data in the region of interest.

3. Navigate the ftp site and download each file matching the noted IDs individually.

4. Merge, load, clip and finally use the downloaded

files. or the JPEG Search Method:

1. Navigate the ftp site and visually identify (using posted JPEG images) the data in

the region of interest and note the segment IDs.

2. Navigate the ftp site and download each file matching the noted IDs individually.

3. Merge, load, clip and finally use the downloaded files.

A third method, while not recommended, is that a data user downloads an entire local copy of

the FTP site and uses their own custom tools for data extraction and processing.

To strengthen the point that none of the above methods cater to usability, an example

using more specific selection of data for download follows. If a user were to follow the KML

Search Method to download CReSIS data from 1993-2013 in the Petermann glacier region they

would first need to download the approximately 170 GB of posted KML files, then find

approximately 360 unique segment IDs and would finally have to navigate to approximately 10

14

different directories on the ftp to download the 360 unique files in one of the provided formats

(MAT, CSV, …). Following this download they would need to merge all of the downloaded

data and subset the resulting dataset to their specific study boundary.

The MATLAB Geographic Search GUI alleviated some of the issues faced by a FTP

user. Geographic Search GUI presented as alternative solution to the use of the basic CReSIS

FTP site. Unfortunately, there is no recorded user data to confirm or deny that Geographic

Search GUI is being used; however the fact that CReSIS FTP usage has not declined

significantly shows that the problems are not fully addressed by the tool [2]. Geographic

Search GUI is hindered by its implementation as a MATLAB tool; however it is the only tool

prior to the integration of the OPS that allowed for spatial subsetting of the output dataset.

4.2 Data Storage Issues

The primary method of data storage for CReSIS is the MATLAB binary files discussed

in section 3.1. File-based storage has many disadvantages, some of which are:

1. Additional libraries/code are required to load, process, and analyze each file format.

2. Related data stored in separate files must be loaded to make comparisons.

3. Files require additional software to manage data access and record data edits.

4. One file cannot be used and modified by more than one user at a time.

5. Most file formats do not support data indexing which can improve data access

and analysis performance.

A relational database management system (RDBMS) provides solutions to all of the

disadvantages of file based storage. With data from many files stored in a database the power

of the structured query language (SQL) can be used to simplify data access and analysis.

Consider the following question a data user may ask, for CReSIS data frames

15

20091224_01_001 to 003 what is the average ice surface elevation? Let’s examine this task

using file based storage and database storage. Using data stored in MAT files, the following

steps outline the process required to complete the task:

1. Search for files on the file system matching the frames in question

2. Load the matching files

3. Extract ice thickness from each file and combine the values

4. Calculate the average of the combined values

If the same data is stored in related tables in a database the task can be simplified into a

single step: execute an SQL query to select and calculate the average ice thickness. Data in a

database can take advantage of various indexing methods which allow SQL to quickly search

for and find data resulting in a significant performance gain, even for this simple task. Code

for both MATLAB (file based storage) and SQL (database storage) are shown in Fig. 9. The

MATLAB method took 23.39 seconds to execute while the SQL method took only 0.25

seconds.

16

Fig. 9: Code required to calculate the average ice thickness over a given set of CReSIS frames.

MATLAB code for file based data (A) and SQL for database data (B) are shown

17

4.3 Project Objectives

It should now be clear what problems were faced by CReSIS prior to the integration

of the OPS. Given that current methods readily available to CReSIS for data storage and

distribution are inadequate, the primary goal of the OPS project is to develop a free and

open source SDI capable of storing, managing, creating, analyzing, and distributing the

dataset collected by CReSIS in a way that provides an improved experience for both end

users and the primary producers of polar remote sensing data. From this goal a set of clear

objectives can be constructed for the OPS project:

1. Develop and deploy a database management system.

2. Develop and deploy a web-based data retrieval system (geoportal).

3. Develop and deploy an API for interaction between MATLAB and the new system.

4. Deploy the new system to the public and include community-derived datasets.

5. Share the source code following standard free and open source software

(FOSS) guidelines.

The following sections outline the specific solutions developed and implemented by

the OPS to achieve these goals.

18

5 OpenPolarServer System Structure and Components

5.1 Spatial Data Infrastructures

Before exploring the conceptual structure and detailed design of the OPS an overview

of some definitions of spatial data infrastructures (SDI) is required. A SDI provides data users

access to spatial data stored on remote servers [21]. In addition, a SDI allows for a single hub

of data management for many data sources resulting in a reduction of the overall effort

required to create and manage data [22][23]. “A SDI should enable the discovery and delivery

of spatial data from a data repository, ideally via one or more web services. Additionally, it is

often desirable that the data provider is able to (remotely) create and update spatial data stored

in a repository. Hence, the basic software components of a SDI consist of: (i) a software client

that can display, query, and analyze spatial data; (ii) a catalogue service for the discovery,

browsing, and querying of metadata or spatial services, spatial datasets and other resources;

(iii) a spatial data service that enables the delivery of the data via the Internet, and/or

processing services such as datum and projection transformations; (iv) a (spatial) data

repository, and (v) GIS software (client or desktop) that permits the creation and maintenance

of data.” [24]

The OPS SDI is a collection of software and custom code used to store, update, analyze,

manage, and distribute data. A simplified SDI definition can be proposed: An SDI is the

collection of software, hardware, and code needed to provide basic data services such as

storage, management, analysis, and distribution to both data users and data producers. What

software, hardware, and code is needed will vary based on the data, management, and

distribution requirements. A conceptual outline of the components required for the OPS SDI

19

follows.

5.2 OpenPolarServer System Structure

Fig. 10 shows the conceptual structure of the OPS SDI. The SDI is composed of 7 basic

components, outlined in sections 5.2.1 through 5.2.7. Each section outlines the basic function

of the component and how it interacts with the rest of the SDI. Chapter 6 presents the actual

software chosen to fill the roles of the components presented in this chapter.

Fig. 10: Conceptual diagram of the OPS SDI components.

20

5.2.1 Virtual Machine (VM) and Operating System (OS)

The first component is the OS of the SDI. The OS (Windows, Linux, OSX, etc…)

serves as the platform to install and execute other SDI components on the server. Often server

OSs are installed on a VM. A VM is a software implementation of a computer. Using a VM

allows a single set of physical server hardware (hard drive, random access memory,

processors) to be shared by many separate VMs, each allocated a certain portion of the real

hardware. The VM is shown by the tan colored area in Fig. 10. Note that all of the SDI

components are within the VM installed on the OS of the SDI.

5.2.2 Relational Database Management System (RDBMS)

A SDI by definition does not require a RDBMS, but most SDIs include some form of

database. A database is an organized collection of data [25]. This means that while data is

stored ultimately on the hard drive the data is organized and managed as a collection of

related tables by the RDBMS. A RDBMS has many advantages over hard drive only-storage

including data management (access restrictions, data constraints), concurrency (multi-user

data access), and indexing (efficient data access). A RDBMS supports the management of

spatial data and is often the primary storage mechanism of SDIs.

5.2.3 Web Server

A key component in any SDI is a web server. A web server allows and controls the

flow of data from anyone connecting to the server via the Internet. To access any of the other

components of a SDI (application server, mapping server, database, web framework, etc…) a

request must be sent to a web server by a client. The web server will process the request, and

21

pass it on to the appropriate SDI components for additional processing. On completion of a

certain task a response will be returned from the SDI component to the web server which will

then present the response to the client.

5.2.4 Web Application Server

A Web Application Server (WAS) is a special type of web server. Often applications

running on the server (web applications) must be exposed to the web in order to make them

accessible to users. A standard web server has no way of managing those server applications.

The WAS stores and manages one or more server applications and exposes the applications

functionality to clients by telling the standard web server that a web application is available.

A client can then make requests to the web server which passes the request to the application

hosted by the WAS. The web application will process the request (generating some result) and

that result will be returned by the WAS to the web server and then returned to the client. The

web server only handles the request/response objects and allows the WAS (and web

applications) to handle the logic of the requests and generation of the responses.

5.2.5 Mapping Server

A Mapping Server is one of the web applications managed by a WAS. The mapping

server is designed to generate a variety of georeferenced spatial data formats for return via

standard web services. The mapping server serves spatial data from both the hard drive and

database to the internet (via the WAS) through standard services such as web map service

(WMS) [26], web feature service (WFS) [27], web map tile service (WMTS) [28], and others.

The OPS primarily uses the WMS service, which is a protocol that defines request and

response structures. A WMS response is a georeferenced image in a format such as JPEG or

PNG. A quality open source mapping server typically implements open geospatial consortium

22

(OGC) [29] compliant services because most web clients will expect a response formatted in

the OGC standard.

5.2.6 Web Framework

It is often desirable for a SDI to provide some custom data input/output and analysis

services to clients. Those services can be created as custom web applications managed by the

WAS as is the case of the mapping server. Another approach is to use a web framework. A

web framework typically connects server-side code to the Internet via the web server. Often

web frameworks also provide code libraries for accessing data in a database and generally

provide code used to decode/encode request/response objects to and from the web server.

Most complete web frameworks provide the scaffolding (basic functionality) and the

developer then writes the code required for the data specific input, output, and analysis. It is

due to the provided scaffolding that it is often desirable to use a web framework instead of

creating a custom web application from scratch.

5.2.7 Application Programming Interface (API)

The custom code written with the web framework is generally referred to as the server

side application programming interface (API). The API can be thought of as the brain (logic)

of the OPS SDI where specific data input, output, and analysis functions are carried out on the

server. Without APIs or web applications a web server can do nothing but serve files.

5.2.8 OPS Client Communications

The OPS SDI supports a wide variety of clients and request types. A client is simply

any software or service that makes a request to the OPS web server. Some examples include a

web browser, desktop application, or custom script in a language that supports web requests.

The primary OPS clients include a web GeoPortal and a MATLAB application which are

23

discussed in the next chapter. Clients can make a variety of requests to the OPS SDI; the most

common requests are shown in Fig. 11. A standard request (A) is best described by the

process of visiting a webpage on the server:

1. A user enters a URL in a web browser, the browser sends a request to the web server.

2. The web server processes the request, finds the HTTP file and returns it.

3. The browser receives the response and renders the HTTP file.

An API request (B) is a process in which a user wants to receive the result of some process

(code) defined on the server based on their inputs. This request is typically generated

automatically by a client based on user inputs to a GUI but can also be generated by a user

created script. The typical process of this kind of request follows:

1. A user (via a custom script or a GUI element) submits a request including some

input data.

2. The client (which the user is interacting with) generates a JSON/XML string from

the user's input and sends a request to the web server.

3. The web server processes the request, and passes on the input to the web framework.

4. The web framework executes some code (based on the user input) and

generates a JSON/XML string and returns a response to the web server.

5. The web server returns a response to the client which handles the returned data

and presents it to the user.

A map request (C) is the final type of request made by clients to the OPS SDI. The

structure of this request is very similar to the API request (B). The typical process of this

kind of request follows:

24

1. A user (almost always via a GUI element in a client) submits a WMS/WFS request to

the web server.

2. The web server passes this request to the web application server, which passes the

request

to the web application (mapping server).

3. The mapping server processes the request and generates an image (JPEG/PNG) or

data (XML/GML) and returns it to the web application server.

4. The web application server returns the response to the web server.

5. The web server returns the response to the client which handles the returned data

and presents it to the user.

Fig. 11: Common web requests made by clients to the OPS server: a basic request (A),

API request (B), and Map request (C).

25

6 OpenPolarServer SDI Implementation

The implementation of the OPS SDI follows the conceptual structure of the previous

chapter exactly. This chapter presents, for each conceptual component, the actual software

selected and its implementation on the OPS (Fig. 12).

Fig. 12: A modified version of Fig. 10 showing the software selected to fill each SDI

component role.

26

6.1 Free and Open Source Software (FOSS)

For all categories of GIS software required for the implementation of the OPS SDI, a

free and open product is available [24]. In addition, a requirement of the OPS is that it can be

constructed using only FOSS because of a limited software budget. Steiniger and Hunter [23]

presented a five-step guide to selecting FOSS for a research project, which includes: (i)

develop software use cases for your own context; (ii) establish a set of evaluation criteria

based on the use cases; (iii) perform the software evaluation with respect to the established

criteria; (iv) develop a weighting criteria according to application context; and (v) select

software based on the results of the evaluation and weighting scheme. An attempt was made

to follow this guide, but it often became clear that the specific FOSS software packages were

the obvious (and sometimes only) choice in their categories.

6.2 CentOS Linux

The CentOS Linux [30] distribution is a stable, predictable, manageable and

reproducible platform derived from the sources of Red Hat Enterprise Linux (RHEL) [31].

The CentOS Project is a community-driven free software effort focused around the goal of

providing a rich base platform for open source communities to build upon [30]. This Linux

distribution was selected because it is open source and based on the commonly used RHEL.

CentOS Linux also has support for all of the required software and tools that were chosen and

described in the following sections. Software can be installed on the CentOS Linux OS using

the YUM package manager [32] and the RedHat Package Manager (RPM) [33].

6.3 PostgreSQL and PostGIS

One of the major contributions of the OPS SDI to CReSIS is the use of a relational

database management system (RDBMS) for the storage of previous standard data files. The

27

RDBMS chosen is PostgreSQL, a powerful, open source object-relational database system

[34]. PostGIS was chosen as the spatial database extender for PostgreSQL and adds support for

spatial queries in SQL [35]. In addition, the psycopg2 Python module is installed and used to

communicate with the database (PostgreSQL/PostGIS) through Python.

Fig. 13: Installation of PostgreSQL, PostGIS, and Psycopg2 on CentOS Linux.

This software is installed using YUM and the PostgreSQL PDGD RPM repository.

Lines 1-7 in Fig. 13 show the inclusion of the PDGD RPM (not included by default with

CentOS) and the exclusion of the CentOS standard PostgreSQL package. An RPM repository

is simply a directory of software packages hosted and managed on the web. Including an

RPM repository in Linux allows the YUM package manager to access and install software

from the RPM directory. Using the PDGD RPM ensures the most recent PostgreSQL and

PostGIS software updates. Line 10 shows the YUM installation of PostgreSQL 9.3 and

PostGIS2. Finally lines 13-14 show the installation of the psycopg2 Python to PostgreSQL

http://postgresql.org/

28

adapter.

After PostgreSQL and PostGIS are installed there is some initial configuration that

must be completed before using the database management system. The configuration consist

of the initiation of a database server, creation of an admin user, creation of a PostGIS template

database and finally the creation of the actual OPS database. All of these steps are completed

using the PL/pgSQL SQL procedural language and pgsql interactive terminal. At the

completion of the code (Fig. 14) the OPS has a running PostgreSQL server with an empty

database created and stored on the CReSIS networked hard drives. Placing the database on

network drives allows the OPS system to leverage the existing CReSIS incremental backup

system. As data is updated in the OPS database, the CReSIS network drives are backed up to

tape or discs. While PostgreSQL does offer many backup and replication services, natively

leveraging the existing CReSIS backup infrastructure saved time and provides the same

essential function as the native PostgreSQL backup services.

29

Fig. 14: Configuration of PostgreSQL and PostGIS on CentOS Linux

The complete OPS database schema is shown in the form of an entity-relationship

(ER) diagram (Fig. 15). To create this schema a standard process of database design was

followed, which includes 8 steps: (1) Determine the purpose of the database, (2) Find and

organize the information required, (3) Divide the information into tables, (4) Turn

information items into columns, (5) Specify primary keys, (6) Set up the table relationships,

(7) Refine the design, and (8) Apply the normalization rules [36]. This is an iterative process

and steps 7 and 8 were repeated many times to fine-tune the database design. The major goal

of the database design process is to improve query efficiency while minimizing data

redundancy in the database. More about the actual creation of the schema in the PostgreSQL

30

software will be discussed in section 6.6.3.

Fig. 15: The OPS Database ER (Entity-Relationship) diagram.

6.4 Apache HTTP and Apache Tomcat

To allow external users, software, and APIs to access the components on the OPS

SDI, a web and web application server are necessary. The Apache Software Foundation [37]

products HTTP and Tomcat were chosen as the web and web application server,

respectively. The Apache Software Foundation has been the go-to source for open source

web servers and more since their creation in 1999. Because the HTTP server and Tomcat

server are both open source and industry accepted they were chosen for the OPS. The

Apache HTTP web server and Tomcat web application server are installed on CentOS Linux

31

using the YUM package manager and the command yum install httpd tomcat6.

Fig. 16: Apache HTTPD primary server configuration file.

The primary configuration file of the Apache HTTP web server (httpd) is shown in Fig.

16. The entire server is running as a virtual host on port 80 (see lines 1 and 34), port 80 is the

standard HTTP web port. On the CReSIS hosted OPS this is changed to port 443, the standard

HTTPS (secure HTTP) web port. Lines 3-5 set up some basic parameters of the web server

including the server administrator (an email), document root (the default web directory on the

server hard drive), and the server name (an IP address or web domain name). Lines 7-9 set up

32

error logging and access logging for the server and enable case insensitive file searching. For

example if there is an HTML file called about.html but the client (user) enters About.html the

Apache web server will find the actual file instead of returning a 404 (not found) error. Lines

11- 14 configure a CGI Proxy that is used by the OpenLayers JavaScript library to make

XMLHttpRequests by avoiding security restrictions in native JavaScript [38]. Lines 16-24

configure a directory for serving data files generated by the server side API. The configuration

in these lines force files in the server data directory $webDataDir, mapped to the URL */data,

to auto-download when requested. Finally lines 26-32 configure another web accessible

download directory mapping the server directory /var/profile_logs/txt to the URL */profile-

logs which stores txt files generated during automated code profiling (code performance

monitoring). Generally the role of <directory> tags is to configure access to a server directory

(such as

/var/profile_logs/txt) to be accessible at a web directory such as http://[ServerName]/profile-

logs.

6.5 Geoserver

One of the requirements of the OPS SDI is that it be able to distribute geographic data

in the form of georeferenced map images to the clients discussed in section 6.7. To achieve this

the GeoServer web application was selected. GeoServer is an open source software server

(web application) that shares geospatial data using open standards [39]. GeoServer was chosen

for the OPS because it is free and open source and is the reference implementation for the

OGC web services standards. The role of GeoServer on the OPS SDI is to take spatial data

from the server hard drive and database and generate georeferenced map images.

33

GeoServer can be installed in many different ways, including as its own complete

standalone web/application server. Because the OPS SDI already has a web server for other

purposes the GeoServer WAR (web archive) installation method was selected. Using the WAR

method means that GeoServer is deployed as a JAVA web application managed by the Apache

Tomcat web application server. Deploying an application in WAR format on Apache Tomcat

is a very simple process. A file geoserver.war is downloaded and placed in the Tomcat web

application directory. On CentOS Linux this directory is /var/lib/tomcat6/webapps/. With a

WAR file (just a standard zip file with a .war extension instead of .zip) placed in the web

application directory the first time the Tomcat server is started the WAR file will be unpacked

(unzipped) into a data directory. The data directory (at least for the GeoServer web

application) contains all of the configuration files for data, security, formats, and styles.

Often a static external data directory is used to make upgrading the GeoServer WAR

application simple. Fig. 17 shows the installation of the geoserver.war and the configuration

of an external GeoServer data directory. Keeping a data directory (which contains all of the

OPS GeoServer configuration) external to the GeoServer WAR allows a developer to simply

place a new geoserver.war file in the Tomcat web application directory each time there is a

software upgrade. A Linux environment variable GEOSERVER_DATA_DIR is set (Fig. 17

line 2-3) that tells the GeoServer web application (installed on line 6) where to look for the

data directory. Ownership and permissions are set for the data directory on lines 9-10 and

finally the Tomcat web application server is started (deploying geoserver.war automatically)

on line 13.

The final step in the installation of GeoServer is to set up a proxy that tells the Apache

HTTP web server that the web application is available from Apache Tomcat. The standard web

34

Fig. 17: GeoServer installation as a Tomcat6 web application on CentOS Linux.

application port for Apache Tomcat is 8080. Lines 9-10 in Fig. 18 tell Apache HTTP to proxy

(or forward) request of the URL http://[SomeServer]/geoserver to the geoserver application

running at http://localhost:8080/geoserver.

Fig. 18: Proxy configuration telling HTTP that GeoServer is available from Tomcat.

35

Once the geoserver.war is installed and the proxy in place the OPS clients will be able

to access all of the features of the GeoServer web application by making requests to

http://[SomeServer]/geoserver. However, without some additional configuration specific to

the OPS data there will be nothing for them to request. GeoServer configuration is done using

a built-in web administration interface (Fig. 19). The configurations shown in the interface are

stored in XML files in the GeoServer data directory. Again, the use of an external OPS

GeoServer data directory means that configuration will stay in place each time the application

is upgraded. The first time GeoServer is set up some initial configuration must be done

including the creation of users, passwords, security settings, and more. Details on these

configurations are available in the GeoServer online documentation.

Data in GeoServer is organized into workspaces, stores, and layers (Fig. 20). A

workspace is simply a group of related stores. There is no requirement for the type of

grouping a workspace represents. The OPS GeoServer contains two workspaces arctic and

antarctic. Again, workspaces do not needed to be organized in any particular way and the

location-based organization is just what worked best for the data included in the OPS

GeoServer. Each workspace contains stores, which are containers of data, some examples

being a shapefile, GeoTIFF, directory of shapefiles, or PostGIS database. Finally each store

contains one or many layers. A shapefile or GeoTIFF store will contain a single layer (since it

is a single file) but stores such as a PostGIS database or directory of shapefiles can contain

many layers. Configuration such as projection, styling, and bounding boxes are set at the

layer level.

36

Fig. 19: GeoServer Web Administration Interface

Fig. 20: Conceptual relationship between GeoServer workspaces, stores, and layers.

37

Once a layer is configured and published by GeoServer (meaning at least one store and

workspace have also been created and published) the data is available for preview using the

GeoServer built-in layer preview tools. Using these tools you can preview the published layer

in any of the GeoServer output format types [40]. Fig. 21 shows a GeoServer layer preview in

the OpenLayers output format (a WMS format) of Natural Earth GeoTIFF data. The URL

(split onto multiple lines for clarity) used to generate the preview is also shown.

38

Fig. 21: GeoServer layer preview (OpenLayers format) of Natural Earth data (B) and the

request URL used to generate the preview (A).

The GeoServer PostGIS data store offers a layer type which is used by the OPS called

an SQL view. This layer type allows you to write SQL which is executed each time the layer

is requested returning a geometry object from a PostGIS database. The SQL view layer type

(and PostGIS store type) are used to distribute CReSIS L2 flight path data stored in the

39

PostgreSQL/ PostGIS database as map images. A useful feature of the SQL view is that it can

be parameterized. This means that custom input variables can be added to the request URL

which are input into the SQL that is executed when the layer is requested. This makes the

layer dynamic in the sense that an image showing different data can be requested each time

(unlike a static GeoTIFF layer.

Fig. 22: Configuration for a GeoServer SQL view layer. A layer preview (OpenLayers

format) (A), and SQL code for the view (B), and SQL view parameters (C) are

shown.

Configuration for the CReSIS radar depth sounder L2 flightlines SQL view and a

preview over Greenland are shown in Fig. 22. Note that default values are set for all of the

SQL view parameters (C) so if a client does not include any input values all of the defaults are

40

used. The request URL (Fig. 23) for the SQL view layer is very similar to the request for the

GeoTIFF layer (Fig. 21). In fact if you exclude line 11 it is an identically formatted request.

Line 11 adds a tag called viewparams and specifies two parameters start_seg=’2010101_00’

and stop_seg=’20121231_99’. The viewparams tag is used to pass named inputs into an SQL

view. The named inputs must be defined SQL view parameters in the SQL view configuration.

This example will limit the result to CReSIS data segments that fall in between 20100101_01

and 20121213_99. Note that the viewparams tag can be completely excluded (to accept all the

default values) or can be included with any number of the configured SQL view parameters

accepting defaults for the any that are excluded.

 Fig. 23: Request URL for the arctic radar depth sounder CReSIS L2 flightlines GeoServer

SQL view.

41

A final step in GeoServer configuration is the specification of styles using the styled

layer descriptor (SLD) syntax which is just simple XML. Fig. 24 shows the SLD for a simple

black 2 pixel wide line. There are many SLD styles included with GeoServer so the creation of

custom styles is optional. More information on SLD is available in the GeoServer

documentation [41].

Fig. 24: SLD (Styled Layer Descriptor) for a simple black line.

42

6.6 Django

Django [42] is a Python Web framework that offers a complete Python library used to

connect clients to the OPS server side database and custom server-side code. Django follows

the “don’t repeat yourself (DRY)” philosophy, which the OPS tries to follow as well. Using

Django features, such as the Object-Relational mapper, URL dispatcher, Database-Access

API, and more, the OPS system is able to leverage an existing and tested library to complete

many of the commonly required tasks of a SDI. The following sections discuss Django and the

OPS implementations of many of the Django features.

6.6.1 Installation and Configuration

Installing the Django web framework on CentOS Linux is very simple. The YUM

package manager can be used to install the Python PIP (python indexing project) package

manager which allows the installation of any Python module (including Django) with a

command of the form pip install [module name] . This is the standard process for installing

Python modules on CentOS. Fig. 25 shows the installation and configuration of both the

Django Python module and the OPS Django project. Lines 2 and 5 install pip (using the YUM

package manager) and Django (using the pip package manager). Lines 8-9 copy an existing

Django project (the OPS Django project) into the standard Django directory on the server.

43

Fig. 25: CentOS Linux installation of the Django Python module and OPS Django project.

A Django project contains all of the configuration, data models, and custom code

required for the Django module to operate. The Django Python module offers all of the

functionality but the files inside of the Django project define the actual operation of Django

for the OPS server. Django offers a management tool manage.py which allows a developer to

create a recommended scaffolding (empty directory structure and files) for a Django project.

This was completed during the initial development of the OPS. A slightly modified Django

project structure (Fig. 26) was selected to best serve the needs of the OPS SDI. The biggest

change is that in the default Django project structure each application (a sub directory of a

project) has its own views file. This file contains the custom code that can be executed by

requests to the server. In the OPS Django project the views code is common to all applications

and therefore is stored at the project level. Some unused files and directories were excluded

and some new files utility, authip, and monitor were added to support various features needed

44

by the OPS SDI. The function of these files will be discussed in the following sections.

Fig. 26: An example of the default layout of a Django project (A) and the actual OPS Django

project layout (B).

45

6.6.2 Model-View-Controller (MVC)

The Django project is implemented using the MVC concept. MVC is a pattern for

organizing software into three related parts: models (M), views (V), and controllers (C). In

the typical definition of MVC a model contains definitions of data, rules, logic, and

functions, a view is the definition of an output or representation of data (such as a chart,

diagram, or page), and a controller takes input from a user and passes it to a model [43]. The

use of MVC in a web application context will be discussed in section 6.7.2. Django has a

slightly different perspective on the MVC concept [44]. Django defines the models as

Python classes which represent the schema of a database, views as custom callbacks (for

rendering of any output type), and defines the controller as the framework itself. The

framework provides methods for getting input from a user (generally from a web server) and

passing that input to views. It also provides methods inside of views for accessing data in

models and creating results from that data. Fig. 27 shows how the Django MVC is used to

handle a standard web request. Each of the Django MVC components are discussed in detail

in the following sections.

46

Fig. 27: A simplified diagram of the conceptual layout of the Django MVC framework in the

context of a web request.

47

6.6.3 Database Models

In section 6.6.2 it was stated that Django defined the M (models) of MVC as Python

classes which represent the schema of a database. These models are the primary objects which

Django uses to perform callback functions created by developers (more on this in section

6.6.5). Each model (class) defines the name, fields, data types, and relationships of a single

table in a database. The complete set of models, stored at the Django app level (Fig. 26) in the

models.py file, define the entire schema of a database. These classes do not simply correspond

to an already created database schema, they are in fact used by Django to generate the SQL

required to create the schema in a database. Django offers support for many DBMS including

PostgreSQL, MySQL, SQLite, and the Oracle Database Server. The Django file settings.py

defines the database backend (PostgreSQL and PostGIS for the OPS) which Django uses to

generate database specific SQL from the models. This means that the same models can be

used to create a working database schema on any of the supported DBMS.

Fig. 28 shows two examples of Django models for the OPS database, the segments and

frames models. The class definition defines the name of the table which will become [app

name]_ [class name] in the database. For example these models are part of the rds (radar depth

sounder) Django app so the first model (lines A1-A10) will become a table called rds_segments

in the OPS database. The creation of this table is shown in lines B1-B8. Part B is the Django

generated SQL which creates the database schema defined by Django models on the

PostgreSQL database. After a complete schema is created in models.py the Django file

manage.py and the command syncdb can be used to generate the SQL (Fig. 28 B) for all of the

project models and execute it on the database defined in settings.py.

48

Fig. 28: Django models (A) and the dynamically generated SQL for creating the models

schema in a PostgreSQL database (B) for the segments and frames tables of the OPS

database.

49

6.6.4 Database-Access API

Django includes an API (library of Python functions) for executing abstracted SQL on

any database generated using the Django models. When a Django model is created it inherits

the Django models class Models.model which includes all of the Django database-access class

methods. These class methods allow a developer to do database CRUD (create, read, update,

and delete) tasks. Behind the scenes the class methods dynamically generate SQL statements

that are executed (using Psycopg2 for PostgreSQL) on the database. The database-access API

also handles the opening and closing of database connections eliminating the need to write

verbose and repetitive code to perform database CRUD tasks. The return from the SQL

statement is encoded into a Python object called a Django QuerySet.

Fig. 29: A database query made using the Django database-access API (A) and the actual

SQL executed by the API in raw SQL form (B).

50

Fig. 29 shows a query on the segments table (defined by the segments model). Part A

shows how the Django database-access API is used to perform SQL queries. The segments

model models.segments.objects class is used to interact with the segments table in the

database. The Django provided class method .filter() (inherited from Models.model) is used to

perform an SQL SELECT query. The arguments passed to .filter() are table field names and

the double- underscore is a special Django constructor which allows SQL methods such as

IN, LIKE, and CONTAINS to be used. Note that the result from .filter() is a Django QuerySet

which can be accessed like any standard Python object using the dot operator. However it is

often desirable to request only a few values in an SQL query and store the results directly in a

Python list. The Django method .values_list() forces the returned QuerySet object to be

converted into Python lists. For the segments query example the result would be a list of the

format [[name1, …, nameN] ,[geom1, …, geomN]] as the two requested output variables are

the name and geom fields of the table. For all types of SQL queries there are Django methods

that emulate there functionality including but not limited to .get_or_create() (select if exists

else insert), .delete() (delete from), .update() (modify existing data).

The segments query example, when executed, automatically creates a database

connection, generates the required SQL, executes the query, and encodes the response in

Python all behind the scenes. This type of Django query is the basic logical element of a

Django View.

51

6.6.5 Python Views API

A view in Django is simply a Python callback that takes some input, performs some

logic (usually using the database-access API), and returns a formatted response object. The

Python Views API is the brain of the OPS server. All of the CRUD tasks for CReSIS data are

written as callbacks (views) in the Python Views API. In addition to the Django framework the

views have access to any Python library installed on the system. Fig. 30 shows a complete list

of the views created for the OPS. Since the complete OPS views API contains over 2000 lines

of code it cannot all be included and explained here. All of the views follow the same basic

pattern and only the internal logic of each callback is unique.

52

Fig. 30: A complete list of the OPS Python Views and a brief description of each.

53

In order to describe the implementation of a Django view the getFrameClosest view

which finds the closest geometry (frame) from the frames table to an input point geometry will

be detailed in full. Fig. 31 shows the function definition and python docstring. Note that the

input to the function is a request. This request is an HTTP request object which was passed to

the Apache HTTP web server by a user (client) and routed to this function by methods

described in section 6.6.7.

Fig. 31: The function definition and docstring for the getFrameClosest Django view.

54

The request object contains a JSON string (see section 6.6.6) which contains the

input data to the function provided by the user. Fig. 32 shows the first logical section of the

function.

Fig. 32: Getting function inputs and parsing the inputs for required data.

Here a utility function getInput() is called which returns the database models for the requested

application, a Python object containing the decoded input values, and a string containing the

application requested. Fig. 33 details the getInput() function and its depended functions.

55

Fig. 33: Utility Python functions used by getFrameClosest to parse the input and get the

Django models. These functions are used in every OPS Django view.

After getInput() is executed the data object must be further parsed into single variables. Lines

33- 35 (Fig. 32) show the parsing of the three required inputs to the function. Optional inputs

56

are created in the same way except default values are set if the input is not found. Note that all

of the logic in the Django views is wrapped in python try catch blocks. This allows the server

to return an appropriate error in case of failure instead of just failing and never returning a

response to the client.

Fig. 34: Logic section of the getFrameClosest Django view.

57

After the input is parsed (Fig. 32) the actual logic of the function is executed (Fig. 34).

Lines 61-63 handle optional input be retrieving a list of all seasons in the database if a list of

seasons was not given by the user. Lines 65-66 create a GEOSGeometry object from the input X

and Y values using the EPSG code (projection code) for the input location. The Django query

on line 69 finds the closest frame to the GEOSGeometry point object using table relationships in

the point_paths table. The important part of this query is the chained filter options

.transform(epsg).distance(inPoint).order_by('distance').values_list('frame_id','distance')[0] [0]

which transforms the frame geometries selected, calculates the distance of each frame

geometry to the point geometry, orders the results by the distance, creates a list of the outputs

and finally returns only the first element (the closest frame) and the frame_id. Lines 72-79

perform an additional query to retrieve the geometry and other required output information for

the previously found closest frame. Finally line 82 wraps the output in a Python dictionary and uses

the utility function response() which simply encodes the dictionary to a JSON string and returns an

HTTP response object to the web server for return to the client. With the return of data to the client

the getFrameClosest view is complete. Again, all views follow this pattern and only there internal

logic differs.

6.6.6 JavaScript Object Notation

For a client to include data in an HTTP request for use in a view the JSON format is

used to encode variables in a structured string object. JSON is a standard notation and has

libraries in most programming languages for encoding and decoding. Python, JavaScript, and

MATLAB all support the JSON format which covers all of the languages used in the OPS

SDI. For example the decoding of input to the getFrameClosest (Fig. 31) view (an X value, Y

value, and optionally list of season names) can be examined (Fig. 35). The JSON string is

58

included in the body of the HTTP request and is extracted by Django (Fig. 33) and then

decoded and parsed by Python using either the json or ujson modules. In this example the

JSON string is shown as a hard coded string, normally it would come as an input from the

HTTP request. JSON handling in MATLAB and JavaScript will be discussed in sections 6.7.1

and 6.7.2.

Fig. 35: An example JSON string being decoded and parsed in Python.

6.6.7 URL Dispatcher and WSGI

With the Django Views API defined on the server the Django web framework needs a

way to tell the web server how to access each callback function (view). To do this Django

leverages a web socket gateway interface (WSGI) to link Apache HTTP and the Django views

API. WSGI allows Apache to take a HTTP request in the form of a URL, pass it to Django,

wait for a response from Django (generated by each view), and then render that HTTP

response back to the client.

59

Fig. 36: A subset of the file urls.py which maps Django views to web URLS using the

Django URL Dispatcher.

When Apache HTTP sends an HTTP request to Django the Django URL Dispatcher is

used to figure out which view to execute. Fig. 36 shows a subset of the configuration file

urls.py which maps Django views to specific URLs for the Django URL Dispatcher. Line 34

maps the getFrameClosest view to the URL http://ops.cresis.ku.edu/ops/get/frame/closest.

When a client sends a request (with JSON data) to this URL it is passed by Apache HTTP to

Django, and then to the getFrameClosest view where it is processed. The view generates an

HTTP response and that response is returned by Django to Apache HTTP and then back to the

client.

With the URL Dispatcher configured the Django web framework, as used by the OPS

is complete. Django offers a much more extensive library of functions not discussed here and

a major part of the framework (dynamic templates) is completely unused. Please refer to the

Django documentation [42] for more information and the appendices for a link to the

complete OPS source code.

http://ops.cresis.ku.edu/ops/get/frame/closest
http://ops.cresis.ku.edu/ops/get/frame/closest

60

6.7 Clients

6.7.1 MATLAB

MATLAB is the primary programming language used by CReSIS for data processing,

data management, and creation of data products for distribution therefore the OPS project has

developed an API for MATLAB which allows communication between the Django API on

the server and any local MATLAB client. The MATLAB API and Data Picker are discussed

in the following sections.

6.7.1.1 API

The MATLAB API is a collection of MATLAB scripts that allow communication

between the OPS Django API and the MATLAB programming language. The primary role of

the MATLAB API is to facilitate communication between the MATLAB Data Picker (section

6.7.1.2) and the OPS but it also allows for the execution of OPS CRUD tasks from

MATLAB. The MATLAB API is developed as a separate library and is used as a plugin to

the MATLAB cresis-toolbox. This means that a directory of organized code (OPS MATLAB

API) is stored in another organized directory of code (cresis-toolbox) which is added to the

MATLAB execution path and used like any other MATLAB functions.

61

Fig. 37: The Django view (A) and MATLAB API function (B) for getFrameClosest.

Each Django view (Fig. 30) has a corresponding MATLAB function in the

MATLAB API. The role of the MATLAB function is to take MATLAB input (a structure),

convert it to a JSON string, send it as an HTTP request to the Apache HTTP web server,

wait to the HTTP response, and finally decode the response back into a MATLAB

structure. Fig. 37 shows the docstrings for the corresponding Django view (A) and

MATLAB API function (B) getFrameClosest.

62

Fig. 38: Body of the MATLAB API function opsGetFrameClosest.

The MATLAB API functions do not perform any of the logic of the task they

represent. All of the logic is handled by the Django views on the server. Each MATLAB

function simply allows a user to call a MATLAB function using MATLAB variables which

are passed to the web server and processed by the corresponding Django view. Fig. 38 shows

the MATLAB API function opsGetFrameClosest which corresponds to the OPS view

63

getFrameClosest. Lines 1-10 take a MATLAB structure and convert it to a JSON string for

packaging in an HTTP request. A MATLAB MEX [45] function (tojson, fromjson) based on

the cJSON library is used to encode the MATLAB structure to JSON [46]. If for any reason

the MEX functions fail a backup library JSONLab [47] (savejson, loadjson) is used. The C++

based MEX functions are much faster than the MATLAB native JSONLab library so they are

used as the primary conversion tool. Lines 13- 20 generate and submit the HTTP request to the

OPS Apache web server and wait for a response. During this time the process discussed in

section 6.6 (Django processing) occurs. Once a response is received by MATLAB lines 23-34

decode the HTTP response (and the JSON it contains) and return a MATLAB structure from

the MATLAB API function.

Fig. 39: An example JSON string being encoded in MATLAB.

In section 6.6.6, Fig. 35 showed the basic process of decoding and parsing a JSON

string in Python. Fig. 39 shows the same data being encoded into a JSON string by MATLAB.

The result variable jsonStr will contain the identical string shown as the input variable jsonStr

in Fig. 35.

64

6.7.1.2 Data Picker

While the MATLAB API can be used as a standalone library and its functions included

in any MATLAB script the primary role of the API is to facilitate the operation of the custom

MATLAB Data Picker developed by CReSIS. The Data Picker is a MATLAB tool developed

at CReSIS for the manual and automated digitization of ice layers. The Data Picker existed

prior the development of the OPS but was built to handle only CReSIS ice surface and ice

bottom layers loaded directly from MATLAB layerData files on a local network. The version

presented here is a major redesign of the tool which allows the inclusion of any layers and

reads and writes OPS server data via the OPS MATLAB API. The Data Picker is one of the

two primary clients of the OPS. Although the design of the Data Picker itself is not a direct

part of this project, the development of the OPS and the new Data Picker were synchronous

and the Data Picker would not function without the OPS MATLAB API and the backend data

storage the OPS database provides.

65

Fig. 40: The CReSIS MATLAB Data Picker user interface.

Fig. 40 shows the user interface (GUI) of the MATLA Data Picker. The GUI consists

of three primary windows, the preference window (top left), the map window (bottom left),

and the pick window (right). Each of these windows gets data from the OPS server. The

preference window is filled with options describing what data is available for viewing in the

tool. All of this data comes from the getSystemInfo view and includes the available radar

systems, seasons, and their respective locations. The preference window also contacts the

GeoServer using the MATLAB mapping toolbox to get a list of available WMS images for

viewing in the region selected. After making a selection in the preference window the map

window is launched. Data in the map window is completely driven by the OPS GeoServer

accesed via the WMS request tool in the MATLAB mapping toolbox. The tool is included in

MATLAB and not a custom part of the OPS MATLAB API. A line is selected on the map

66

window by clicking which calls the OPS view getFrameClosest. When a selection is made in

the map window the pick window is loaded. The radar echogram is loaded from a local file

system, but all of the layer points, their layer information, and the list of frames in the

segment are pulled from the OPS server using the MATLAB API. Radar echogram data is

not stored on the OPS because of its data volume and raster data type. At the current time a

solution for storing large volumes of raster data that need to be loaded dynamically (not just

as a PNG/JPEG image) has not been identified which offers superior performance to a

standard file system. Due to this the CReSIS radar echograms are stored outside of the OPS

SDI on the local CReSIS file system. A future task and goal of the OPS development will be

to address this issue.

67

6.7.2 OPS GeoPortal

The OPS GeoPortal is a JavaScript web application that is designed with the discovery

and download of geographic content (OPS data) as the primary function. The discovery of

geographic content is the primary role of a GeoPortal [48]. The OPS GeoPortal is a complete

MVC application developed using the Sencha ExtJS application framework which is an

application development platform with cross-browser compatibility, advanced MVC

architecture, and a sleek modern UI [49]. ExtJS is distributed freely for web applications that

are FOSS which means commercial developers must purchase ExtJS but open source

developers can use if free of charge. The expanse suite of tools and methods offered by ExtJS

will allow the OPS GeoPortal to continue to develop and change with the needs of the

cryosphere community.

The model-view-controller (MVC) application concept was introduced in section 6.6.2

because the Django web framework also follows the MVC pattern. ExtJS follows the same

MVC pattern by separating data management, logic, and interface elements within the

framework. Data management (M) is handled using ExtJS models and stores. These objects

define what type and format background data (models) should be stored as and how and where

to retrieve and store the data (stores). The layout (V) or view of the web application is handled

using views, which define what user interface (UI) components are shown on the screen and

how they are laid out. The logic (C) of the web framework is handled using controllers.

Controllers do things like define what happens when you click a button or click on a map. The

individual pieces, or components, of an MVC application normally are stored in separate files

68

in some pre-defined directory structure. ExtJS follows this standard practice and even offers a

desktop tool called Sencha Cmd [50] that automatically creates a template directory and

contains tools for creating new empty components within the template. Using the Sencha Cmd

tool and following the MVC architecture laid out with ExtJS guarantees that the OPS

GeoPortal will be a fully MVC compliant web application.

While the ExtJS library contains a vast number of tools and methods it does not

contain a native solution for map based content. An additional open source library GeoExt is

used to add this functionality to ExtJS [51]. GeoExt is a JavaScript framework which extends

the base classes of the ExtJS framework using the OpenLayers (OL) [52] JavaScript mapping

library. Because GeoExt extends the existing class structure of ExtJS it blends seamlessly

with ExtJS. This means that all of the Sencha Cmd tools and ExtJS functionality operate as

normal on the GeoExt extended ExtJS framework. OL is an actively developed and popular

open source mapping library. At the time of this thesis the OL community is currently

working on a new major release called OpenLayers 3 or OL3 [52]. This release will update

OL to use a class like structure similar to ExtJS and GeoEXT and will add new functionality

like 3D map interfaces using WebGL (Web Graphics Library). This addition of a 3D based

map interface (such as Google Earth) will allow the OPS to eventually simplify its

architecture by using a single cylindrical projection displayed on a 3D globe allowing

locations like Greenland and Antarctica to be configured using a single map definition instead

of two separate maps projected in local polar stereographic projections.

69

Fig. 41: The OPS GeoPortal user interface.

Combining the functionality of ExtJS, GeoExt, and OpenLayers allowed for the

development of the OPS GeoPortal (Fig. 41). The GeoPortal GUI can be broken down into

several graphical elements. These elements are separated in the MVC framework meaning

that they each have their own view (how the element is shown), model (what data is used by

the element), and controller (what the element does). Fig. 42 shows the GeoPortal divided

into its two major elements: the menu panel and the tabs panel. The menu panel contains

elements such as the spatial and temporal data filtering options, download output options, and

70

buttons required to submit various requests. The tabs panel contains a tabbed set of pages

(much like tabs in a web browser). Some of the tabs (called maptabs) represent the different

geographic locations of data (Arctic, Antarctic) included in the GeoPortal. Other tabs include

an About page, the CReSIS FTP data site (shown as an external webpage from within the OPS

GeoPortal), and a Downloads tab which shows submitted download requests, their status, and

a link to completed data for download. Each of the two maptabs (Arctic, Antarctic) contain

additional separate elements including a layer selection tree, map interface, and echogram

browsing panel. These are shown in the bottom image of Fig. 42. In ExtJS panels are nested

which means the Arctic:Map panel is a completely separate element from the Antarctic:Map

panel. This provides the ability to separate different logic into different files which is the basic

idea behind MVC. All of the panels (Menu, Tabs (Echogram, Map, Layer)) are collapsible

and some are resizable. This means that the actual layout of the GUI can be dynamically

adjusted by the user or automatically adjusted by the developer for performing different tasks

within the GeoPortal.

71

Fig. 42: The OPS GeoPortal GUI divided into its basic elements (top) and a map tab (bottom)

divided into its basic elements.

72

In addition to the discovery and download of OPS data a major feature of the OPS

GeoPortal is the ability to spatially browse CReSIS L1B radar echograms. The bottom image

in Fig. 42 shows the Arctic maptab in echogram browsing mode. This simply means that the

echogram panel is expanded showing a radar echogram image. The expansion of the

echogram panel is done automatically when a user starts echogram browsing mode by clicking

to select a line in the map panel. The layers and menu panels are also automatically collapsed

during this process to allocate the entire browser window to the map and echogram panels. In

its current implementation the radar echograms are just JPEG images loaded and rendered

from the CReSIS FTP site. In future development a live echogram browser will be launched

that loads the raw CReSIS radar echogram data from the OPS server and allow for dynamic

exploration of the image including image processing adjustments, axis adjustments, and a link

between the map and image. This dynamic echogram browser will be loosely based on the

work done by Christian Panton and his Python based HTML5 radar viewer [53].

While spatially browsing radar echograms is enough to make the GeoPortal useful to

the cryosphere community the primary role of the GeoPortal is the discovery and download of

data. Users are able to set both temporal (start/stop date, season names) and spatial data filters

in the Menu panel. Spatial filters are set by allowing the user to either draw a polygon in the

map panel or allowing them to enter a well-known text (WKT) polygon string and render it to

the map panel. Once a user sets at least a spatial filter (all temporal filters can be left as

defaults) they can select a download format (CSV, CSV-GOOD, KML, or MAT) and submit a

request for data. When a user clicks the Download File button the Menu controller click event

for the button is triggered. This event collects all of the possible inputs (start/stop dates,

seasons, drawn/rendered boundary …) and encodes them all into a JSON string formatted as

73

input to the OPS Python Views API. Since JSON (JavaScript Object Notation) is based off of

the native JavaScript object a simple call to an object method called stringify creates a JSON

string from a JSON object. To submit an HTTP request to the Apache web server ExtJS uses

the asynchronous JavaScript and XML (AJAX) protocol [54]. The process here is very similar

to that of the MATLAB API. The GeoPortal takes user inputs (generated by ExtJS GUI

elements) encodes them in a JSON string and sends an HTTP request to the Apache web

server calling a corresponding Django view, waits for an HTTP response, and then decodes

the response and presents the results to the user. Fig. 43 shows the GUI elements used in the

download process. As downloads are completed their status and processing time are rendered

to an ExtJS grid panel on the Downloads tab. Also included in the Downloads grid is a link to

the data file on the OPS server ready for download.

74

Fig. 43: The OPS GeoPortal spatial filter selection (blue) after a polygon has been drawn on

the map. Also the download menu (red) and a preview of the Downloads tab populated with

completed downloads.

Fig. 44 shows the AJAX request for the download of a CSV file in the GeoPortal.

Lines 7-11 define what view will be requested (the URL of the view is given on line 8), and

give the input JSON data (line 11). When this function is called AJAX submits an HTTP

request and waits for a response in the background. This means that users can still interact

(and even submit more downloads) from the GeoPortal GUI. When AJAX receives a

response from Apache it enters the success block (line 13). This section (lines 22-27) parses

the response data (a URL for a file on the server in this case) and writes the results to the

75

Downloads tab on the GUI. If a known error occurs (the view reports an error with status=0)

lines 32-36 are executed which notifies the user of the error via a pop-up alert and writes the

error status to the Downloads tab.

Line 41 handles any other unknown errors that may occur. The same AJAX format is used to

call any of the OPS Python views from the GeoPortal.

76

Fig. 44: OPS GeoPortal AJAX function for submitting a CSV format download to the OPS

Python views API.

77

The OPS GeoPortal contains thousands of lines of code and therefore cannot be

explained in full. To illustrate the basic interaction of MVC components of ExtJS in the

GeoPortal the system and season selection menus will be detailed. Systems in the GeoPortal

correspond to CReSIS radars: radar depth sounders (rds), accumulation radar (accum), snow

radar (snow), and kuband radar (kuband). The Menu contains a drop-down box which allows

for the selection of a single system. In order to populate this box with the systems stored in

the OPS database an ExtJS model and store are used (Fig. 45). A model defines the structure

of a data object. In this case the System model is an object with four fields (season, system,

location, and public). A store can be defined in a variety of ways, using JSON for local fixed

data, or in this case an AJAX request. The Systems store is an AJAX request which

automatically sends an HTTP request to the OPS Python view getSystemInfo when the

GeoPortal loads. This call will create a store which contains a complete list of seasons (and

there corresponding system and location) from the OPS database.

Fig. 45: The OPS GeoPortal ExtJS model (left) and store (right) for the CReSIS radar systems.

78

When the Systems store is loaded it contains a non-unique list of CReSIS radar

systems because there are many seasons with the same radar system. The drop-down menu for

systems only needs to present a list of unique systems for the user to select from. In order to

do this the ExtJS controller for the Menu panel is used. When a user selects the arrow on the

systems drop- down menu an event called focus is triggered. The Menu controller is

configured to listen for this event (Fig. 46) and perform some logic when the event is

triggered. In order to determine which systems should be displayed in the selection menu the

focus event function first determines which location (tab) the user is currently viewing (lines

3-4). Next the function retrieves all of the data in the ExtJS Systems store (line 6), clears any

filters currently applied to the store (line 7), and uses the collect function to get a distinct list

of the systems in the store (lines 8-12). Finally the function gets the drop-down menu object

(line 14), creates a new store of the distinct systems (lines 16-19) and binds the store to the

drop-down menu object (line 21) exposing the list of distinct systems to the user for selection

in the menu.

79

Fig. 46: The ExtJS controller listener for the change event of the systems drop-down menu.

Each time a user selects a new system from the drop-down menu another event called

change is triggered. The GeoPortal uses this event to update another drop-down menu which

lists the CReSIS data seasons available for the selected radar system. Again the Menu

controller is configured to listen for this event (Fig. 47) and perform some logic when the

event is triggered. First the change event function gets the system currently selected by the

user (line 3). The function next loads the Systems store (line 5), clears any filters currently

applied to the store (line 6), and then uses the filter function to get a store which only contains

seasons for the selected system, location, and that have a True value for the public field (lines

80

7-9) and creates a list of the distinct seasons (lines 10-14). Finally the function gets the drop-

down menu object (line 15), creates a new store of the distinct seasons (lines 17-20) and binds

the store to the drop- down menu object (line 22) exposing the list of distinct seasons for the

selected system to the user for selection in the menu.

Fig. 47: The ExtJS controller listener for the focus event of the systems drop-down menu.

While AJAX is used by ExtJS to access the OPS Python API using the Django web

framework the map images displayed in the GeoPortal must be generated by the OPS

GeoServer. The OpenLayers JavaScript library handles this using built in WMS request object,

81

similar to how MATLAB uses the mapping toolbox to request GeoServer images in the Data

Picker. OpenLayers handles all of the map interaction of the GeoPortal including navigation

(zoom/pan), map click events, and drawing features on the map.

A useful utility feature of the GeoPortal is the ability to measure distances and areas

with OpenLayers measuring tools. The OpenLayers library comes with built-in measuring

tools but for them to show live distances/areas as measurements are being made requires the

development of additional code. An external OL class plugin developed by Xavier Mamano,

OL- DynamicMeasure [55], already existed and offered many features non-existent in the OL

default library. This plugin was chosen to avoid replication of already existing work,

following the principle of DRY (don’t repeat yourself), or more fitting DRO (don’t repeat

others). Fig. 48 shows completed distance and area measurements on the map.

82

Fig. 48: Distance and Area measuring tools available in the OPS GeoPortal.

While there is much more development required to build the OPS GeoPortal the

above examples provides some insight into how the MVC architecture allows a user to

perform the task of downloading data, browsing echograms, and measuring features. The

OPS GeoPortal is the face of the OPS and therefore is extremely important to its success and

acceptance in the cryosphere community. Developing the portal using open source software

and following relevant best practices and standards for web application development ensures

the system can easily be upgraded as technology advances and new needs within the

cryosphere community are identified.

83

6.8 Vagrant and VirtualBox

One of the requirements of the OPS SDI is that users be able to deploy the complete

SDI on laptops for use during remote fieldwork. Without some additional development this

means a developer would need to install and configure the entire SDI manually each time a

user wanted to deploy the OPS in the field. This, for obvious reasons, is not feasible. The

solution was to develop the OPS using a provisioning software called Vagrant [56] and

create the complete SDI inside of a virtual machine [57] using Oracle VirtualBox [58]. A

virtual machine (VM) is a software implementation of a computer. A VM allows a single set

of physical hardware (Hard Drive, Random Access Memory, Processors) to be shared by

many separate VMs each allocated a certain portion of the real hardware. Installing all of the

OPS SDI software (Apache HTTP, Apache Tomcat, Django, etc…) inside of a VM on a

field user's computer ensures that there will be no installation conflicts with software

installed on the computers own operating system. The VM alone does not solve all the

issues, without Vagrant, a developer would still need to manually install the VM and all of

the OPS SDI software. Vagrant allows the definition of the installation of an entire operating

system and any software in two simple text files, a Vagrantfile (Fig. 49) and Provisions file

(Fig. 50).

84

Fig. 49: The OPS SDI Vagrantfile used by Vagrant to create the OPS VM.

85

The Vagrantfile (Fig. 49) tells the Vagrant software which base box (a pre-configured

operating system with no software installed) to use (lines 10-11), what network ports and IP to

use (lines 14-17) and configures the VM by setting the VM name and hardware allocations

(lines 20-32). Finally it defines a Provisions file which will be executed when the VM starts

(line 35).

The Vagrant Provisions file (Fig. 50) is a Linux shell script which contains all of the

Linux terminal commands needed to install and configure all of the OPS SDI software. The

provisions file is too long to detail completely but the installation of Python 2.7.6 in a virtual

environment (lines 121-135) and Apache HTTP and WSGI (141-153) are shown in Fig. 50.

The provisions file takes a fresh CentOS Linus OS (defined by the vagrant box in the

Vagrantfile) and installs all software, custom files, and configurations resulting in a complete

and fully functioning OPS SDI. All of the software discussed in sections 6.2 through 6.6 are

installed during this provisioning process.

86

Fig. 50: A subset of the Vagrant provisions file which shows the installation of Python

and Apache HTTP.

While the CReSIS hosted VM is set up once and hosted on a high availability (HA)

server at CReSIS any OPS users who wish to run their own complete local copy of the OPS

SDI can do so by installing Vagrant, VirtualBox, and downloading the OPS GitHub

repository [59]. They can then simple run the command vagrant up from the download OPS

directory on a command line and the complete OPS SDI will be created and run locally on

their own VM.

87

7 Usability Analysis

In order to verify that the OPS has in fact achieved the goal of providing an improved

experience for end users of polar remote sensing data a numerical comparison of the usability of

each one of the four existing systems was completed. In the comparison, a single user

completed the same task, “download CReSIS L2 data in the csv-good format over a NE

Greenland outlet glacier (79N) including only data from 2010 and 2011”, on each system.

Fig. 51: Results from a usability test of four systems. The processing time, number of

keystrokes, and number of mouse clicks required to download the same dataset are shown

for each system.

The usability results show that the OPS has achieved the goal of providing an

improved experience. Fig. 51 shows that the OPS had the fastest processing time, the

smalles number of mouse clicks, and the second least number of keystrokes. Mouse clicks

and keystrokes indicate the simplicity of the user interface of a system. A system which

88

requires the lowest number of each generally is simpler to use. Note that while the CReSIS

FTP recorded the least number of keystrokes they were likely offset by mouse clicks which

is the second highest number in that category. In fact when the number of clicks and

keystrokes are combined the OPS recorded the lowest total indicating the OPS system is

simpler to use than the other systems.

It should be noted, however, that these results are from a single user performing one

task and may not necessary represent an average situation over a set of users and tasks. These

results also present the ideal case (i.e., perfect use of each system where end users are already

familiar with the systems through tutorials and help documentation). The OPS does include

interactive help documentation that should make it very easy for new users to familiarize

themselves with the system quickly.

89

8 Conclusions

In section 4.3 the tasks and goals of the OPS SDI project were outlined. This thesis

presented the methods used to complete each of these goals. PostgreSQL, PostGIS, and

Django were used to develop and deploy a database management system. ExtJS, GeoExt, and

OpenLayers were used to develop and deploy a Geoportal. Custom MATLAB scripts and the

Django Python web framework were used to deploy an API for the interaction between

MATLAB and the OPS. The reduced effort (as shown by the usability analysis in chapter 7)

needed to acquire and analyze data will allow and encourage new scientists to explore the data

and potentially provide new scientific knowledge in an effort to understand the cryosphere, ice

sheets, and future sea level rise. The achievement of these goals marks the completion of the

development and distribution of the OPS SDI. It is the author’s hope that the cryosphere

community accepts the system, uses it, and contributes to its future. During the development of

the OPS many lessons were learned and there are still many to learn. Software development is

an ever changing field and it is very likely that new developments in the near future will better

serve various features of the OPS SDI. It is for this reason that continuous maintenance and

upgrades to the project continue.

The OPS has been developed using all FOSS and conforms to practical data and coding

standards. The system is public at https://www.ops.cresis.ku.edu and many cryosphere

community data providers have or are preparing to include their datasets in the OPS. The code

is open source and provided free of charge or restriction on GitHub at

https://github.com/CReSIS. As an open source project the OPS will only be successful if the

community contributes to its growth. Some possibilities for future exploration of the OPS are:

https://www.ops.cresis.ku.edu/
https://github.com/CReSIS

90

1. Cloud-based hosting of the SDI on systems such as RACKSPACE [60] or Amazon

EC2 [61].

2. An interactive (web based) data picking system build in JavaScript to replace

the MATLAB data picker.

3. An interactive JavaScript echogram browser that loads dynamic data instead of

static images.

4. A web based data loading system so community members can load their own data

into a centrally hosted system without CReSIS intervention.

In addition to those future development opportunities the maintenance and continuous

software upgrade of the OPS is also a task that must be accounted for. CReSIS IT staff, with

the aid of future graduate students, will continue to maintain and develop the system over its

lifetime. The effort and care taken during the development, i.e., following data and coding

standards as well as creating comprehensive technical documentation, will simplify future

development and maintenance of the OPS.

91

9 References

[1] CReSIS, “About | Center for Remote Sensing of Ice Sheets.” [Online]. Available:

https://www.cresis.ku.edu/about. [Accessed: 31-Oct-2013].

[2] R. Epperson, “Personal Communication,” Lawrence, Kansas USA, 2013. [3] P. Gogineni,

“CReSIS Data.” Lawrence, Kansas USA, 2012.

[4] National Aeronotics and Space Administrasion (NASA), “Data Processing Levels.”

[Online]. Available: http://science.nasa.gov/earth-science/earth-science-data/data-

processing-levels-for-eosdis-data-products/. [Accessed: 31-Oct-2013].

[5] J. A. MacGregor, M. A. Fahnestock, G. A. Catania, J. D. Paden, S. Gogineni, S. C.

Rybarski, S. K. Young, A. . Mabrey, and B. . Wagman, “Radiostratigraphy of the

Greenland Ice Sheet,” manusript in preperation.

[6] W. B. Krabill, “IceBridge ATM L2 Icessn Elevation, Slope, and Roughness.” National

Snow and Ice Data Center, Boulder, Colorado USA.

[7] B. Blair and M. Hofton, “IceBridge LVIS L2 Geolocated Surface Elevation Product.”

National Snow and Ice Data Center, Boulder, Colorado USA.

[8] T. Haran, T. Bohlander, T. Scambos, T. Painter, and M. A. Fahnestock, “MODIS mosaic of

Antarctica (MOA) image map.” National Snow and Ice Data Center, Boulder, Colorado

USA, 2005.

[9] National Aeronotics and Space Administrasion (NASA), “Landsat ETM+ Arctic Mosaic.”

Global Mapper, 2013.

[10] I. Joughin, B. Smith, I. Howat, and T. Scambos, “MEaSUREs Greenland Ice Velocity Map

from InSAR Data.” National Snow and Ice Data Center, Boulder, Colorado, USA, 2010.

[11] P. Fretwell, H. D. Pritchard, D. G. Vaughan, J. L. Bamber, N. E. Barrand, R. Bell, C.

Bianchi, R. G. Bingham, D. D. Blankenship, G. Casassa, G. Catania, D. Callens, H.

Conway, a. J. Cook, H. F. J. Corr, D. Damaske, V. Damm, F. Ferraccioli, R. Forsberg, S.

Fujita, Y. Gim, P. Gogineni, J. a. Griggs, R. C. a. Hindmarsh, P. Holmlund, J. W. Holt, R.

W. Jacobel, a. Jenkins, W. Jokat, T. Jordan, E. C. King, J. Kohler, W. Krabill, M. Riger-

Kusk, K. a. Langley, G. Leitchenkov, C. Leuschen, B. P. Luyendyk, K. Matsuoka, J.

Mouginot, F. O. Nitsche, Y. Nogi, O. a. Nost, S. V. Popov, E. Rignot, D. M. Rippin, a.

Rivera, J. Roberts, N. Ross, M. J. Siegert, a. M. Smith, D. Steinhage, M. Studinger, B. Sun,

B. K. Tinto, B. C. Welch, D. Wilson, D. a. Young, C. Xiangbin, and a. Zirizzotti,

“Bedmap2: improved ice bed, surface and thickness datasets for Antarctica,” Cryosph., vol.

7, no. 1, pp. 375–393, Feb. 2013.

http://www.cresis.ku.edu/about
http://www.cresis.ku.edu/about
http://www.cresis.ku.edu/about
http://science.nasa.gov/earth-science/earth-science-data/data-

92

[12] J. Bamber, “Greenland 5 km DEM, Ice Thickness, and Bedrock Elevation Grids.” National

Snow and Ice Data Center, Boulder, Colorado USA, 2001.

[13] “Natural Earth Data,” 2013. [Online]. Available: http://www.naturalearthdata.com/. [14]

 Mathworks, “Matfile_format,” 2013. [Online]. Available:

http://www.mathworks.com/help/pdf_doc/matlab/matfile_format.pdf. [Accessed: 31-Oct-

2013].

[15] “Center for Remote Sensing of Ice Sheets FTP.” [Online]. Available:

ftp://ftp.cresis.ku.edu/data/.

[16] “National Snow and Ice Data Center.” [Online]. Available: http://nsidc.org/.

[17] “Operation Ice Bridge Data Portal.” [Online]. Available: http://nsidc.org/icebridge/portal/.

[18] “PolarGrid Cloud GIS.” [Online]. Available: http://polargrid.org/polargrid/software-

release.

[19] Z. Guo, R. Singh, and M. Pierce, “Building the PolarGrid portal using web 2.0 and

OpenSocial,” Proc. 5th Grid Comput. Environ. Work. - GCE ’09, p. 1, 2009.

[20] K. W. Purdon, “CReSIS Level-III Workflow Creation and Data Standardization,” in

University of Kansas Undergraduate Research Symposium, 2011.

[21] B. Clinton, “Coordinating Geographic Data Acquisition and Access : The National Spatial

Data Infrastructure,” Fed. Regist. Pres. Doc., vol. 59, no. 71, p. 4, 1994.

[22] A. Rajabifard and I. Williamson, “Spatial data infrastructures: concept, SDI hierarchy and

future directions,” Proc. GEOMATICS’80 …, 2001.

[23] S. Steiniger and A. J. S. Hunter, “The 2012 free and open source GIS software map – A guide

to facilitate research, development, and adoption,” Comput. Environ. Urban Syst., vol. 39,

pp. 136–150, May 2013.

[24] S. Steiniger and A. J. S. Hunter, “Free and Open Source GIS Software for Building a

Spatial Data Infrastructure,” in Geospatial Free and Open Source Software in the 21st

Century, E. Bocher and M. Neteler, Eds. Springer Berlin Heidelberg, 2012, pp. 247–261.

[25] Wikipedia, “Database,” Wikipedia. [Online]. Available:

http://en.wikipedia.org/wiki/Database.

[26] Open Geospatial Consortium Inc., “OpenGIS ® Web Map Server Implementation

Standard,” 2006. [Online]. Available: http://www.opengeospatial.org/standards/wms.

[Accessed: 31-Oct-2013].

http://www.naturalearthdata.com/
http://www.mathworks.com/help/pdf_doc/matlab/matfile_format.pdf
http://nsidc.org/
http://nsidc.org/icebridge/portal/
http://polargrid.org/polargrid/software-
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Database
http://www.opengeospatial.org/standards/wms

93

[27] Open Geospatial Consortium Inc., “OpenGIS ® Web Feature Service Implementation

Standard,” 2010. [Online]. Available: http://www.opengeospatial.org/standards/wfs.

[28] Open Geospatial Consortium Inc., “OpenGIS ® Web Map Tile Service Implementation

Standard,” 2010. .

[29] Open Geospatial Consortium Inc., “Open Geospatial Consortium Inc.,” 2013. [Online].

Available: http://www.opengeospatial.org/. [Accessed: 07-Nov-2013]. [30] “About

CentOS.” [Online]. Available: http://www.centos.org/about/. [31] RedHat, “RedHat Enterprise

Linux.”

[32] S. Vidal, “YUM Package Manager.”

[33] RedHat, “RedHat Package Manager (RPM).”

[34] “About PostgreSQL.” [Online]. Available: http://www.postgresql.org/about/. [35]

 “PostGIS.” [Online]. Available: http://postgis.net/.

[36] Wikipedia, “Datbase Design.” [Online]. Available:

http://en.wikipedia.org/wiki/Database_design.

[37] “The Apache Software Foundation.” [Online]. Available: http://www.apache.org/. [38]

 OpenLayers, “OpenLayers ProxyHost CGI.”

[39] “GeoServer.” [Online]. Available: http://geoserver.org/display/GEOS/Welcome. [40]

 GeoServer, “GeoServer Layer Preview.”

[41] “GeoServer Documentation.” [Online]. Available: http://docs.geoserver.org/stable/en/user/.

[42] “Django Web Framework.” [Online]. Available: https://www.djangoproject.com/. [43]

 Wikipedia, “Model-View-Controller (MVC).”

[44] “Django MVC FAQ.” [Online]. Available:

https://docs.djangoproject.com/en/1.6/faq/general/#django-appears-to-be-a-mvc-

framework-but-you-call-the-controller-the-view-and-the-view-the-template-how-come-

you-don-t-use-the-standard-names.

[45] MATLAB, “Introducing Mex Files.”

http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/
http://www.centos.org/about/
http://www.postgresql.org/about/
http://postgis.net/
http://en.wikipedia.org/wiki/Database_design
http://en.wikipedia.org/wiki/Database_design
http://www.apache.org/
http://geoserver.org/display/GEOS/Welcome
http://docs.geoserver.org/stable/en/user/
http://www.djangoproject.com/
http://www.djangoproject.com/

94

[46] D. Gamble, “cJSON library.” [Online]. Available: http://cjson.sourceforge.net/.

[47] Q. Fang, “JSONlab toolbox.” [Online]. Available:

http://www.mathworks.com/matlabcentral/fileexchange/33381-jsonlab-a-toolbox-to-

encodedecode-json-files-in-matlaboctave.

[48] M. G. Tait, “Implementing geoportals: applications of distributed GIS,” Comput.

Environ.Urban Syst., vol. 29, no. 1, pp. 33–47, Jan. 2005.

[49] Sencha, “Ext Js.” [Online]. Available: http://www.sencha.com/products/extjs/.

[50] Sencha, “Sencha Cmd.” [Online]. Available: http://www.sencha.com/products/sencha-

cmd/download.

[51] “GeoExt 2.” [Online]. Available: http://geoext.github.io/geoext2/.

 [52] OpenLayers, “OpenLayers 3.” [Online]. Available: http://ol3js.org/.

[53] C. Panton, “Radar Viewer.”

[54] Wikipedia, “AJAX.” [Online]. Available

http://en.wikipedia.org/wiki/Ajax_(programmig).

[55] X. Mamano, “OL-DynamicMeasure,” GitHub. [Online]. Available:

https://github.com/jorix/OL-DynamicMeasure.

[56] HashiCorp, “About Vagrant.” [Online]. Available:

http://www.vagrantup.com/about.html. [57] Wikipedia, “Virtual Machine.” [Online]. Available:

http://en.wikipedia.org/wiki/Virtual_machine.

[58] Oracle, “VirtualBox.” [Online]. Available: https://www.virtualbox.org/.

[59] K. W. Purdon, T. Stafford, and J. D. Paden, “OpenPolarServer GitHub Repository.” .

[60] OpenStack, “RackSpace Cloud Servers.” [Online]. Available:

http://www.rackspace.com/cloud/servers/.

[61] Amazon, “Amazon EC2.”

http://cjson.sourceforge.net/
http://www.mathworks.com/matlabcentral/fileexchange/33381-jsonlab-a-toolbox-to-
http://www.mathworks.com/matlabcentral/fileexchange/33381-jsonlab-a-toolbox-to-
http://www.sencha.com/products/extjs/
http://www.sencha.com/products/sencha-
http://geoext.github.io/geoext2/
http://ol3js.org/
http://www.vagrantup.com/about.html
http://www.vagrantup.com/about.html
http://en.wikipedia.org/wiki/Virtual_machine
http://www.virtualbox.org/
http://www.rackspace.com/cloud/servers/

95

10 Appendices

10.1 Source Code

The OPS source code is available for free (both in cost and application) on GitHub at

https://github.com/CReSIS. There are multiple projects on GitHub described in the following

table.

Project Name Description Link

OPS The primary source code repository. https://github.com/CReSIS/OPS

OPS-GEOPORTAL The complete geoportal source code.

Only a compiled version is included

in the OPS repository.

https://github.com/CReSIS/OPS-

GEOPORTAL

OPS-MATLAB The OPS MATLAB API source

code.

https://github.com/CReSIS/OPS-

MATLAB

10.2 Web Application Links

The web applications used for pre-OPS data access can be viewed/used at the

following URL’s.

Project Name Description Link

Geographic Search GUI MATLAB subsetting tool for the

CReSIS FTP.

ftp://data.cresis.ku.edu/data/geogr

aphic_search

PolarGrid Cloud GIS Non-Active reference page for

the IU PolarGrid cloud GIS.

http://www.polargrid.org/polargri

d/cloud-gis-service

NSIDC OIB Data Portal The operation NSIDC Operation

Ice Bridge GeoPortal.

http://nsidc.org/icebridge/portal/

https://github.com/CReSIS
https://github.com/CReSIS/OPS
https://github.com/CReSIS/OPS-GEOPORTAL
https://github.com/CReSIS/OPS-GEOPORTAL
https://github.com/CReSIS/OPS-MATLAB
https://github.com/CReSIS/OPS-MATLAB
ftp://data.cresis.ku.edu/data/geographic_search
ftp://data.cresis.ku.edu/data/geographic_search
http://www.polargrid.org/polargrid/cloud-gis-service
http://www.polargrid.org/polargrid/cloud-gis-service
http://nsidc.org/icebridge/portal/

	Table of Contents
	1 Introduction
	2 Data
	2.1 CReSIS Data
	2.2 Community Data
	2.3 Reference Data

	3 Pre-OPS Spatial Data Infrastructure
	3.1 Data Storage Formats
	3.2 Data Distribution Methods
	3.3 Data Access Methods

	4 Problems and Objectives
	4.1 Data Distribution Issues
	4.2 Data Storage Issues
	4.3 Project Objectives

	5 OpenPolarServer System Structure and Components
	5.1 Spatial Data Infrastructures
	5.2 OpenPolarServer System Structure

	6 OpenPolarServer SDI Implementation
	6.1 Free and Open Source Software (FOSS)
	6.2 CentOS Linux
	6.3 PostgreSQL and PostGIS
	6.4 Apache HTTP and Apache Tomcat
	6.5 Geoserver
	6.6 Django
	6.7 Clients
	6.8 Vagrant and VirtualBox

	7 Usability Analysis
	8 Conclusions
	9 References
	10 Appendices
	10.1 Source Code
	10.2 Web Application Links

